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Introduction
The word amateur is based on the Latin words amator (a lover) and amare (to

love).  An amateur is someone who loves what he does, and pursues it for the pleasure of
the act itself.  These notes are intended for the pool player who enjoys playing the game,
and who enjoys understanding how things work using the language of physics.  There is
probably very little pool playing technique discussed in this manuscript that will be new
to the experienced pool player, and likewise, there is little physics that will be new to the
experienced physicist.  However, there will be hopefully new pool technique for the
interested physicist and new physics for the interested pool player.  The tone of the
presentation is not directed necessarily toward either the pool student or the physics
student, but rather toward the amateur who enjoys both.  The physics that is used here is
not derived from first principles; it is assumed that the reader is familiar with such ideas
as Newton’s laws of motion, center of mass transformations, moments of inertia, linear
and angular acceleration, geometry, trigonometry, and vector notation.  Reference to a
calculus-based introductory college level physics textbook should be sufficient to
understand fully anything used or mentioned in this text.  The Feynman Lectures on
Physics (Vol. 1) is one such text that the reader will find enjoyable.

This discussion is divided into four sections.  Section 1 discusses the equipment
(balls, tables, cue sticks, cue tip, cloth) and some of its associated properties (various
friction coefficients, forces, moments of inertia).  Section 2 discusses the concept of
natural roll.  Section 3 discusses the cue tip and cue ball impact.  Section 4 discusses
collisions between balls.  Each section includes some general discussion and specific
problems (along with their solutions).  Some exercises are also given along the way; it is
intended for the reader to experiment on a pool table with some of the techniques that
have been discussed.
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1. Properties of the Equipment
Pool, billiard, and snooker balls are uniform spheres of, usually, a phenolic resin

type of plastic.  Older balls have been made of clay, ivory, wood, and other materials.  On
coin-operated tables, the cue ball is sometimes larger and heavier than the other balls;
otherwise, all the balls in a set are the same size and weight.  Standard pool balls are
2 1

4 " in diameter, snooker balls are either of two sizes, 2 1
8" or 2 1

16 ", and carom

billiard balls are one of three sizes, 2 27
64", 2 3

8", or 2 7
16 ".  Tolerances in all cases are

±0.005".  Pool balls weigh 5.5 to 6oz, snooker balls weigh 5 to 5.5oz, and billiard balls
weigh 7 to 7.5oz.

Problem 1.1: What is the volume of a pool ball in terms of its radius R?
Answer: In spherical coordinates, the volume of a sphere is given by

V = r2 sin drd d

0

R

∫
0
∫

0

2

∫ = 1
3 R3( ) 2( ) 2( ) = 4

3 R3

where R is the radius of the ball.  The volume of a standard pool ball is between
4
3 1.120in( )3 = 5.885in 3  and 4

3 1.130in( )3 = 6.044 in3 .

Problem 1.2: In order to satisfy the size and weight limits, what is the density range of
the ball material in units of oz/in3?
Answer: The density is the mass divided by the volume, =M⁄V.  For a standard pool ball
the density is between 5.5oz/6.044 in3=0.910oz/in3 and 6oz/5.885 in3=1.020oz/in3.  For
comparison, the density of water is 0.578oz/in3.

The inertia tensor of a rigid body is defined as the elements of the 3 by 3 matrix

Iij = (r)
V∫ ij rk

2

k
∑ − rir j

 

 
 
 

 

 
 
 
dv

where the components of the vector r=(x,y,z) are the cartesian coordinates.  For a uniform
sphere, (r)=  is a constant and is the density of the ball material.  The mass of the ball is

M = V = 4
3 R3 .

Problem 1.3: Determine the inertia tensor for a ball in terms of M and R.
Answer: Taking the moment of inertia about the x-axis gives

Ixx = (r)
V∫ z2 + y2( )dv  = Szz + Syy = 2Szz

It is interesting to notice that the moment of inertia about the x-axis, for example as given
above, depends only on how the mass  of the object is distributed along the z- and y-axes.
Some thoughtful reflection will reveal that, for the coordinate axes origin taken to be the
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center of the sphere, the z2 integral Szz is the same as the y2 integral Syy, so only one
integral really needs to be done as indicated in the last equality above.  In fact,
Sxx=Syy=Szz  since for a sphere, the choice of axis is completely arbitrary. Using
z = rcos( ) , x = rsin( )cos( ) , and y = rsin( )sin( )  allows these to be written in

polar coordinates.  Taking Szz for example gives

Szz = r4dr

0

R

∫ cos2 sin d

0
∫ d

0

2

∫ = 1
5 R5( ) 2

3( ) 2( ) = 1
5 MR2

The moment of inertia about any axis is twice this value, giving  Ixx = Iyy = Izz = 2
5 MR2 .

It may also be seen that the off-diagonal elements of the inertia tensor are all zero.  This
means that any choice of orthogonal coordinate axes  is formally equivalent to any other,
and any such choice corresponds to the principle axes.  For other rigid bodies, the off-
diagonal elements are generally nonzero, and only a special choice of the coordinate axes
will result in a diagonal inertia tensor.  Written as a matrix, the inertia tensor is

I =
2MR2

5

1 0 0
0 1 0
0 0 1

 

 
  

 

 
  

An important property of this inertia tensor is that its product with any vector  is simply

a scaling of that vector, the direction does not change: I = 2
5 MR2( ) .

The kinetic energy of a ball consists of two parts, translational and rotational.  The
translational kinetic energy is given by T(Trans)=1/2MV2, where V is the velocity of the
center of mass of the ball.  The mass of the ball, M, is the proportionality constant
between the velocity squared and the energy.  The rotational kinetic energy about a
principle axis is given by the similar equation T(Rot)=1/2I 2, where  is the angular
velocity, for example in radians per second.  Therefore the moment of inertia, I, is the
proportionality constant between the angular velocity squared and the rotational kinetic
energy.  The most general equation for the rotational energy of a rigid body is
T(Rot)=1/2 ⋅I⋅ , in which  is the angular velocity about each axis, I is the 3 by 3 inertia

tensor, and the dot implies the appropriate matrix-vector or vector-vector product.  The
quantity L=I  is the rotational angular momentum about the center of mass, and the
simple form for I given above means that for a pool ball the angular momentum is always
aligned with the angular rotation.  The rotational energy may then be written as

T(Rot ) = 1
5 MR2( ) ⋅ = 1

5 MR2( ) 2 .  The freedom of axes choice for a uniform sphere

will often allow the problem at hand to be simplified to only a single rotation axis, in
which case the simple scalar equation may be used

When a force is applied to a rigid body, such as a ball, the velocity of the center of
mass changes according to the equation F = M ˙ V , and the angular velocity changes
according to the equation r × F = I ˙ .  When a single principle rotational axis is
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considered, the latter equation reduces to the simpler rsin( ) F = I ˙ , where  is the

angle between the vectors r and F, with magnitudes r and |F| respectively.   is in the
direction perpendicular to the plane defined by the two vectors r and F, and aligned, by
convention, with the right-hand-rule (i.e. when the fingers of the right hand curl in the
direction that rotates r into F, then the thumb points along the direction of positive .
Other analytic expressions for the vector cross product will also be used in this
discussion, but the right-hand-rule provides a useful and intuitive defintion.)  The vector r
points from the center of mass of the ball to the point on the surface of the ball at which

the force is applied.  In these equations, ˙ V ≡ dV
dt  is the linear acceleration along each

coordinate axis and ˙ ≡ d
dt  is the angular acceleration around each coordinate axis.  The

similarities in the relations between the force and the mass M for the linear acceleration
and between the force and the moment of inertia I for the rotational acceleration are again
seen.  The rsin( ) factor shows how the angular acceleration depends on the direction of
the force.  When the force is applied directly toward the center of mass of the ball, then
the sin( ) factor is zero and there is no angular acceleration; it is only when the force is
applied in a direction askew from the center of the ball that angular acceleration occurs.

A force is required to rub two objects together.  If the two objects are pressed
together with a normal force FN, and a sideways force of magnitude Ff causes the two
objects to slip against each other without acceleration, then the coefficient of sliding
friction is defined as (sliding)=Ff/FN.  To a good approximation, the coefficient of
friction between two surfaces is a constant, independent of the forces and independent of
the speeds of the two sliding objects.  A small coefficient of friction is associated with
slippery object pairs, and a large coefficient of friction is associated with sticky object
pairs.  There is also a static coefficient of friction.  Static friction is defined in a similar
manner to sliding friction, but it applies to two surfaces that are at rest.  For a given pair
of surfaces, the static coefficient of friction is larger than the sliding coefficient, although
for some surface pairs they are very close in value.

There are several frictional forces that are important in pool.  The first is the
sliding friction of a ball on the cloth, Fs.  Fs=µ (sliding)W where W is the weight of the ball
(FN=W=Mg where g is the acceleration of gravity).  Since the ball weight and the
coefficient of friction are constants for a given ball and for a given table, the frictional
force of a sliding ball is a constant.  The magnitude of the frictional force does not depend
on the velocity of the ball or upon  for the ball as long as the ball is sliding on the cloth.
The direction of this force does depend on the ball velocity and , and this will be
examined in more detail in the following discussions.  If the ball is not sliding on the
cloth (e.g. the ball is at rest, or the ball is rolling smoothly without slipping on the cloth
surface), then there is no sliding frictional force.

It is interesting to consider the nature of the cause of a sliding frictional force.  At
a microscopic level, the atoms in the molecules of one surface are attracted to those of the
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other surface.  As the object slides forward, new interactions, or bonds, are formed in the
forward direction, maintained momentarily, and then broken as the individual atoms are
pulled apart.  However, it is not directly these bonds that cause the friction.  The reason is
that the same kinetic energy is  lost in forming the bond as is gained back again when it
breaks, and there is no net change of energy due to the forming and breaking of these
bonds as the surfaces slide across each other.  But for the small amount of time that the
individual atoms interact, vibrational energy of the surface molecules is transferred to the
other molecules in the bulk of the objects.   (Energy is also transferred in the opposite
direction, but at a much smaller rate.  The net energy flow is from the surface atoms to
the bulk atoms, a consequence of the second law of thermodynamics.)  The result of this
energy transfer is that translational kinetic energy is transformed into vibrations of the
molecules of the bulk materials, or in other words, into heat and sound.  From this point
of view of a physicist, it might be said that it is the heat and sound that cause the
frictional force; this is somewhat the opposite of the layman’s point of view, namely, that
friction causes the heat.

Problem 1.4:  A block slides down an inclined plane without acceleration; what is the
relation between µ and the angle of the slope of the plane?
Answer: The downward force is the weight of the object W=Mg.  The component of this
force normal to the plane surface is FN=Wcos( ) where  is the angle of incline.  The
component of the downward force tangent to the surface of the plane is Ft=Wsin( ).  This
force is directed down the incline, accelerating the object, and it is opposed by the
frictional force which is directed uphill.  Since the object is sliding without acceleration,
all of this tangential force is balanced exactly by the frictional force, Fs=-Ft.  The
coefficient of friction is then given by =Ft/FN=tan( ).   This relation between slope and
the coefficient of friction is so fundamental that it is sometimes taken as a de facto
defintion.

A sliding block provides a simple conceptual model for understanding several
other aspects of sliding friction.  Consider a sliding block of mass M on a level surface
with a sliding coefficient of friction .  The downward force of the block is the weight of
the block, W=Mg, and this force is exactly opposed by an upward force of the surface;
this means that the block does not accelerate in the vertical direction.  The horizontal
force is constant in magnitude, |Fs|= W= Mg and the direction of this force is opposite to
the velocity which is taken to define the positive direction.  This frictional force slows
down the sliding block according to the equation ˙ V =- g  where the minus sign is due to
the direction of the force.  It is interesting that this equation does not depend on the block
mass; several equations of motion in the following discussions will be similarly
independent of the ball masses.  Integration over time gives V(t)=V0- gt where V0 is the
initial velocity at t=0.  Of course, this equation is valid only as long as the block is
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sliding.  Integration again over time gives the distance x as a function of time as
x=V0t-1⁄2 gt2 where the distance is measured from the starting point.

Since the block is slowing down, kinetic energy is not conserved in this process.
This is a dissipative system, not a conservative system.  How does the kinetic energy
depend on time and distance?  Substitution of V(t) above gives

T = 1⁄2MV2 = 1⁄2M(V2
0 – 2V0 gt + 2g2t2 )

    =T0 – gx.
Kinetic energy is lost as a linear function of the distance and a quadratic function of time.
When the block slides to rest, T=0, the initial energy and total sliding distance d are
simply related as T0= gd.  If the initial energy of the block were doubled, then the
distance that the block slides before coming to rest would also double.  However, if the
initial velocity were doubled, then the final distance would increase by a factor of four.
Note also that for a given initial energy T0, if the coefficient of friction were to increase,
then the total sliding distance must decrease, and if the coefficient of friction were to
decrease, then the total sliding distance must increase.  A related quantity of interest is the

power dissipation, defined as ˙ T ≡ dT
dt .  From the quadratic time function, or using the

chain rule ˙ T = dT
dx

dx
dt , the power dissipation for a sliding block is seen to be ˙ T = MgV.

The treatment of frictional forces for a sliding block are relatively simple; the somewhat
more complicated situations for a billiard ball sliding on a table and for two colliding
billiard balls are treated in the following sections.

How can the coefficient of friction be measured?  There are several possibilities,
depending on the equipment available with which to make measurements or on the data
available.  (1) One method would be to attach a measuring scale to the block, and simply
measure the force required to slide the block on the surface without acceleration; this
force divided by the weight of the block would give directly the coefficient .  (2) If the
surface can be held at an arbitrary slope, then can be determined as in P1.4.  This may
not be always practical (for example if the surface is a heavy billiard table).  (3) If the
velocity or the energy could be measured accurately at two points in a given trajectory,
then the equation T=T0- Mgx at these two points could be used to determine T0 and the
product Mg.  An independent determination of the weight Mg would then allow to be
determined.  However, velocities are relatively difficult to measure, so this also may not
be practical.  (4) Suppose that the block slides a distance d in time td before coming to
rest.  Then the initial velocity was V0= gtd.  Substitution of this into the quadratic
distance equation gives =d/(1⁄2gtd2).  Of course, this is not an exhaustive list of
possibilities, and many other schemes could be devised based on preparation of the initial
velocity or trajectory measurements of various types.

A second force is the rolling resistance of a ball on the cloth.  This is not, strictly
speaking, a sliding frictional force since it does not invlove sliding surfaces, but the
formal treatment of this force is similar to the above sliding frictional force.  A detailed
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examination of the forces involved in this situation will be postponed until the next
section.  For the present discussion, this rolling resistance will be modeled as a ball
rolling uphill on an inclined plane.  This is a conservative model.  The dissipative energy
loss of an actual billiard ball is then considered to be analogous to the energy loss of the
model ball in the conservative gravity field.  Because this model is a conservative system,
it is possible to determine the equations of motion of the ball without understanding the
forces.

For an incline of slope ,  the height above the starting point is given by
h=s sin( ), where s is the distance up the incline from the starting point.  The potential
energy is then by given as a function of s by U(s)=Mgh=sMgsin( ).  In this model it is
assumed that there is no energy dissipation through heat.  The total energy E=T+U is a
constant, so any kinetic energy lost by the ball is transferred to potential energy in the
gravity field.   This gives the relation T(s)=T0-sin( )sMg, where T0=E is the initial energy
of the rolling ball at the bottom of the incline.  It is now seen that the kinetic energy for a
ball rolling on an incline obeys the same equation as for the sliding block, but with the
incline slope, corresponding to sin( ), assuming the role of the sliding coefficient of
friction of the block.  However, in the case of a rolling ball, the kinetic energy expression
is more complicated, and this, along with the examination of the associated forces, is
discussed in more detail in the following section.  Using the chain rule expression, the

power dissipation for the ball rolling up an incline is given by ˙ T = dT
dx

dx
dt =sin( )MgV,

where V is determined by the speed parallel to the incline.  If, for some reason, it were not
possible to measure the slope of the incline, it could be determined indirectly by
measuring the sin( ) factor in the above equations in the same manner that the sliding
coefficient of friction can be measured for a sliding block.

The connection between an actual ball rolling on a level table and this model
problem may be justified by considering the rolling ball at a microscopic level.  The
nature of the effective frictional force arises in part from the compression of the cloth
fibers as the ball rolls past.  Once compressed, they do not rebound immediately as the
ball passes; if they did, then there would be no energy lost in this manner by the rolling
ball.  The energy lost by this irreversible compression of the fibers slows the rolling ball.
Energy of the rolling ball is also lost to vibrations of the ball and table, and eventually to
the increased temperature of the surroundings.  As the ball rolls forward an infinitesimal
amount, it rolls also uphill on the cloth, losing a small amount of kinetic energy.  But the
cloth cannot support the ball weight, so it compresses the fibers.  This transfers the
potential energy from the gravity field into the spring constants of these compressed
fibers.  As the ball continues to roll, the fibers remain compressed for a small time, and
this time lag prevents the potential energy stored in the fibers from being returned to the
ball kinetic energy.  The horizontal distance that the ball rolls on the table can be
measured, but the effective height that it would have risen if the cloth fibers had not
compressed cannot be measured directly.  Therefore, the effective slope sin( ), which
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may be associated with an effective rolling coefficient of friction µeff
(rolling)

, must be

determined indirectly.
Consider a ball rolling a distance d on a table in time t before coming to a stop.

At this time, an effective force is assumed of the form Fr= µeff
(rolling)

Mg that opposes the

rolling ball.  Newton’s equation Fr = M ˙ V  may be rewritten as µeff
(rolling)

g=- ˙ V .

Integration over time results in µeff
(rolling)

gt=V0–V where V0 is the initial velocity.

Integration over time again gives 1⁄2µeff
(rolling)

gt2=V0t–d.  The final velocity is zero when

V0=µeff
(rolling)

gt and this may be used to eliminate V0 from the distance equation.  The

effective coefficient of friction for the rolling ball may then be determined from the
equation

(rolling)
eff =

d
1
2 gt 2

The ball mass does not appear in this relation.  The dimensionless quantity table speed is

defined as 1⁄µeff
(rolling)

and is similarly independent of ball mass.  With this definition of

table speed, a very slow table is in the range of 50-70.  Normal table speed is 80-100.  A
very fast pool table might have a speed higher than 120.  The cloth on a billiard table is
usually finer and smoother than that on a pool table, and a fast billiard table might have a
speed over 150.  The force due to rolling resistance is much smaller than that due to
sliding friction.

The sliding frictional force and the rolling frictional force of a ball on a table are
independent quantities.  Consider for example a ball on a hard rubber surface; the sliding
friction would be very large, while the rolling resistance would be relatively small.
Alternatively, consider a ball on a Teflon surface with a soft backing; the sliding friction
would be relatively very small, while the rolling resistance would be relatively large.  The
uniformity of billiard cloth material limits the range of extremes that are encountered in
practice.  The official BCA (Billiard Congress of America) rules specify a billiard cloth
that is predominantly wool.  The PBTA (Professional Billiard Tour Association)
requirements are even more specific, and detail a brand and type of billiard cloth, namely
Simonis 860; although this is partly a matter of sponsorship, it may be noted that this is a
relatively fast pool table cloth that results typically in table speeds of 100 to 130 when
newly installed.

Problem 1.5: A ball is lagged perfectly on a standard 9' pool table and it is observed that
the ball travels from the foot cushion to the head cushion in 7.00 seconds.  What is the
table speed?  What was the initial velocity of the ball as it left the last cushion?
Answer: The playing area of a standard 9' pool table is 50" by 100".  After accounting for
the ball width, the center of the ball travels (100"–2.25")=97.75" between cushions.  The
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acceleration due to gravity is g=386 in/s2.  The table speed is

TableSpeed = 
1

(rolling)
eff =

1
2 gt 2

d
=

0.5 ⋅386 in
s 2( )⋅ t2

97.75 in( ) = 1.97⋅ tsec
2

= 1.97 ⋅ 7.002( )= 96.7

This is a fairly fast pool table.  It is customary to approximate the g/(2d)=1.97 factor as
2.0 on a 9' table.  The table speed may then be estimated simply as 2t2 where the time is
measured in seconds.  For playing purposes, it is usually unimportant to know the table
speed to more than 2 significant figures.  The velocity after the last cushion was

V0 = (rolling)
eff gt =

2d

t
=

2 97.75in( )
7.0s

= 27.9 in
s( ) .

The initial velocity is seen to be twice the time-average velocity, which is given by d/t.

Exercise 1.1: Measure the table speed of some of the tables on which you play regularly.
Rather than try to lag a ball perfectly, set up a ramp with cue sticks, and adjust the height
of the ramp and initial ball placement so that the ball rebounds off the foot cushion and
stops just before touching the head cushion.  Disregard the small time it takes for the ball
to achieve natural roll after impact with the foot cushion.  Take the average time for
several rolls  in order to account for timing inaccuracies.

A third important frictional force is that between two colliding balls.  The forces
between two balls change during the collision.  The collision time is very short, so these
forces can be very large in order to transfer energy from one ball to another during a
collision.  The frictional forces act in a direction tangential to the surface of the ball at the
point of contact between the balls.  This is shown schematically in Fig. 1.1.  The linear
forces that accelerate the balls are directed between the ball centers.  The resultant force
on a ball is the sum of these two vector forces.  That velocity component of a ball due to
the tangential frictional forces is called either collision induced throw or spin induced
throw, depending on the spinning condition of the balls and on the cut angles involved.
When two balls slide against each other, both balls are accelerated by frictional forces.
The frictional force vector that accelerates one ball is exactly opposite to that which
accelerates the other ball.  Note however that the angular acceleration due to the frictional
forces has the same sign on both balls, due to the fact that the opposing forces are applied
to the front of one ball but to the back of the other.  As before, to a good approximation
the frictional force is independent of the speed at which the two surfaces slide against
each other.  The force is constant unless the spinning balls “lock” against each other (as
two interlocked gears), at which time the sliding frictional force vanishes.
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FN

-FN

FT

F=FN + FT

-FT

˙

˙

Fig. 1.1. The normal forces FN, tangential forces due to sliding friction FT,
the resulting total force F, and the angular acceleration ˙  are shown
schematically for two colliding balls.  The magnitudes of the forces
change during the collision, but the ratio of the tangential and normal
forces are constant and are determined by the coefficient of friction.  The
magnitude of the tangential forces are shown greatly exaggerated.  Note
that although the tangential forces acting on the two balls exactly oppose
each other, the resulting angular accelerations have the same sign.

Problem 1.6: Two object balls are frozen together and aligned straight toward the foot
cushion exactly toward a marked spot.  The nearest ball is 72" away from the cushion.
The farthest ball from the cushion is hit at an angle with the cue ball.  The object ball is
observed to miss the point on the cushion by 4".  Assuming that this collision induced
throw is due to friction, what is the coefficient of friction for these two balls?
Answer: FN is directed toward the marked spot, and FT is perpendicular as in Fig. 1.1.
The resultant velocity is parallel to the total force vector.  The coefficient of friction is
related to the angle of throw  by

tan( ) =
FT

FN
= =

VT

VN
=

DT

DN

Substitution of the appropriate distances gives the coefficient of friction as

=
4"

72"
= 0.0556
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Exercise 1.2: Measure the collision induced throw angle for several sets of balls at pool
rooms where you play regularly.  Generally, if the balls are worn or dirty, they will have a
high coefficient of friction, and if they are new or polished, they will have a low
coefficient of friction.  Smear some chalk on the contact point between the frozen balls,
and an increased coefficient of friction should be observed.  Smear some talcum powder
on the contact point, and a smaller coefficient of friction should be seen.  Place a drop of
water (or spit) on the contact point and the coefficient of friction will become essentially
zero.  Correcting for collision induced throw is one of the challenging aspects of playing
with different sets of balls in tournaments, and of playing at different pool rooms.

A fourth frictional force is the static friction between the cue tip and the cue ball.
The cue tip must not slide on the cue ball.  If this occurs unintentionally, then a miscue
results and the cue ball behaves unpredictably; if the cue tip slides intentionally against
the cue ball, then an illegal “push shot” has occurred.  The static frictional force is related
to the normal force and to the static coefficient of friction by the relation static=FT/FN

where FT is the minimum force required to cause the cue tip to slide on the surface of the
cue ball.

FT = F cos( )

F = FN + FT

FN = F sin( )

FN

FT

b

R

Fig. 1.2. The normal forces FN, tangential forces due to static friction FT,
and the resulting total force F for contact between the cue tip and cue ball
are shown schematically.  The magnitudes of the forces change during the
collision, but the ratio of the tangential and normal forces are constant and
are determined by the impact point and limited by the the static coefficient
of friction.

Problem 1.7: For a particular cue tip, it is observed that miscues begin to occur when the
cue tip contacts the cue ball at a height halfway between the center and the top of the cue
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ball.  What is the static coefficient of friction between the cue tip and the cue ball?  If the
static coefficient of friction is 1.0, what is the displacement at which miscues begin to
occur?
Answer:  Refer to Fig. 1.2.  The slope of the cue ball at the point of contact. is determined
by

cot( ) =

b

R
 
 
  

 
 

1 −
b

R
 
 
  

 
 

2

where b is the displacement away from the center.  When the force F is applied to the cue
ball in a horizontal direction, this may be written as a sum of the normal force toward the
center of the cue ball FN=Fsin( ), and the tangential frictional force FT=Fcos( ).  The
coefficient of friction and the maximum displacement are related by

static =
FT

FN
= cot( )  = 

bmax

R
 
 
  

 
 

1 −
bmax

R
 
 
  

 
 

2

bmax

R
 
 
  

 
 = static

1 + static
2

For bmax/R=1/2,

static =
1

2

1 − 1
4

=
1

3
=.577

For static=1.0,
bmax

R
 
 
  

 
 =

1

2
=.707

As seen for these two cases, a higher coefficient of friction allows the cue tip to contact
the cue ball at larger displacements without miscuing.

Exercise 1.3: Determine the static coefficient of friction between your cue tip and a cue
ball.  Instead of determining the point of miscue (as in P1.7), hold a ball against a cushion
and stand your cue shaft vertically on the ball.  Estimate the distance away from the
center ball, and use the equation in P1.7 to determine µstatic.  Wipe your cue tip clean,
removing all chalk, and you should see a smaller coefficient of friction.  Experiment with
different kinds of chalk and with different tip conditions.  Note that it is the displacement
of the actual contact point of the cue tip that should be measured, and not the
displacement of the cue shaft edge.
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2. Slide and Natural Roll
Suppose that at some time a ball is known to have some (center of mass)

translational velocity and some spin (about the center of mass).  For simplicity, assume
that the spin axis is horizontal and is perpendicular to the translational velocity (i.e. the

ball has straight topspin or draw; e.g. V=V ˆ i  and = ˆ j  ).  As the ball slides on the cloth

on the table, the friction between the ball and cloth will cause both the translational and
angular velocity to change.  This force will act to accelerate the ball, that is to increase or
decrease the velocity, until an equilibrium situation occurs in which the translational and
angular velocities “match” each other, at which time the sliding frictional force becomes
zero.  This is the natural roll (also called normal roll, smooth roll, or rolling without
slipping) situation.  Over a small time dt, the distance traveled by the ball will be Vdt, and
the outside surface of the ball will roll a distance R dt relative to the ball center of mass.
Therefore, this “matching” occurs when V=R .

The natural roll condition is important to examine because the speed and spin of a
sliding ball are always being forced toward the natural roll condition by the sliding
friction, and once achieved, natural roll is maintained by the ball until it collides with
another ball or cushion or rolls to a stop.

V

F

Fig. 2.1. The linear velocity V, angular velocity , and corresponding
frictional force F are shown schematically for a backspin shot.  V is
positive, whereas F and  are taken to be negative as shown.

Kinetic energy is not conserved during the equilibration period as the sliding ball
approaches the natural roll condition.  This is easy to see in the case in which the
translational velocity and angular velocity oppose each other, as in a backspin shot
depicted in Fig. 2.1.  (Positive  is taken to be in the clockwise direction in Fig. 2.1.)  In a
backspin shot, the initial frictional force acts to both slow down the ball and to decrease
the magnitude of the spin, clearly decreasing simultaneously both types of kinetic energy.

A useful concept to introduce in this discussion is the spin/speed ratio /V.  In
some situations, a more useful quantity is the dimensionless ratio J=(R /V); for the above
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backspin shot, this is the ratio of velocity at a point on a ball on the rotational equator that
is due to the spin to the velocity of the center of mass of the ball.  In situations in which
several spin components are examined simultaneously, the dimensionless vector quantity
J=(Jx,Jy,Jz)=R /V is useful.  As discussed above Jy=+1 corresponds to the natural roll
condition when the velocity is directed along the x-axis.

The frictional force acts on the very bottom point of the ball, where the ball
touches the cloth, and it points in a horizontal direction.  The force acts to accelerate the
ball according to the equation F = M ˙ V .  Integrated over some time period, this gives a
change of momentum

Ft = M V − V0( ) .

in which V0 is the initial velocity vector.  Note that since F and V point in opposite
directions in a backspin shot; the ball slows down over time.  When F and V point in the
same direction, e.g. a ball over-spinning with topspin, the ball speeds up over time.  In the
case depicted in Fig. 2.1, this equation simplifies to

|F|t=-M(V-V0).
where the sign of the right hand side results from the fact that the velocity and force
vectors point in opposite directions.  (In the general case for positive V0, F>0 when
R 0>V0, and F<0 when R 0<V0 or in other words, F and (J-1) have the same sign.)

The angular velocity of the sliding ball changes according to the equation

r × F = I ˙ .  For the backspin shot, r=-R ˆ k , F=-|F|ˆ i , and ˙ = ˙ ̂  j .  In this situation, this
equation simplifies to RF = I ˙ .  Integrated over some time period, this gives

RF t = I − 0( ) .

Note in Fig. 2.1 that for a backspin shot the frictional force is acting to increase the
angular velocity from an initial negative value to a final positive value.  If the cue ball
contacts an object ball while the angular velocity is still negative, this is called a draw
shot.  If all the spin is removed by the cloth friction and the ball is spinning neither
forward nor backward upon impact with an object ball, this is called a stun shot.  If
forward roll, or in particular natural roll, is achieved prior to collision, this is called a
drag shot.  As shown in the above equation, it is the initial angular velocity, the sliding
friction between the ball and the cloth, and the time before the collision that distinguishes
these three shots.

Problem 2.1: What is the relation between linear and angular velocity for a sliding ball?
Answer: Eliminating the common |F|t from the above two expressions gives

I

R
− 0( ) = −M V − V0( )   .

Using the previous expression for I for a ball results in

V = V0 − 2
5 R − 0( )   .

This expression is valid at any time the ball is sliding on the cloth.  Although derived
specifically for the backspin shot, this expression is valid for any frictional force.  Note
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that for the backspin shot, V decreases as  increases, and for the over-top-spin situation,
V increases as  decreases.

Problem 2.2: Determine the final linear velocity of a ball after natural roll is achieved as
a function of initial linear and angular velocities.
Answer: Natural roll is achieved when the linear and angular velocities equilibrate.
Substituting V=R  in the expression from P2.1 gives

VNR = 5
7 V0 + 2

7 R 0

Note that if the initial angular velocity were zero, then the sliding ball would eventually
slow down to 5/7 of its initial velocity.  If the initial angular velocity matched exactly the
initial linear velocity, V0=R , then the linear velocity would remain unchanged.  If the
initial angular velocity is negative, as for a drag shot, then the final linear velocity is even
less than 5/7 of the initial velocity; for example, if the initial angular velocity is equal to
natural roll, but in the opposite direction, V0=-R , then the final velocity is 3/7 of the
initial velocity.  If the initial spin is very large and negative, then the final natural roll
velocity will be negative; this can occur in masse shots, or in situations involving
collisions with other balls.

Exercise 2.1: Experiment with the drag shot.  Use a striped ball in place of the cue ball so
that the spin is easily observed.  Strike the “cue” ball below center.  Observe how the ball
initially spins backward.  The cloth friction slows this backspin until at some point the
ball is not rotating at all, but is simply sliding across the table.  Beyond this point the ball
begins rolling forward.  At some point all sliding stops, and the ball achieves natural roll.
During all of the time that the ball is sliding on the cloth, the speed of the ball is
decreasing.  If you have a video camera, record some of these shots and play them back
in slow motion.  The drag shot is useful when playing on dirty or unlevel tables, and a
low-speed impact between the cue ball and object ball is required for position.  The initial
high speed of the cue ball reduces the effect of the unlevel table, and only at the very end
after natural roll is achieved and the velocity is reduced to about 3/7 of the initial velocity,
does the impact occur.  The average velocity of the cue ball is about 5/7 of the initial
velocity, which means that the effect of the unlevel table has been reduced by about 2/7 or
29% from the case where natural roll is achieved immediately.

Exercise 2.2: Experiment with a stun shot.  A stun shot is when the cue ball has zero
angular velocity about the horizontal axis upon contact with an object ball or cushion.
Set up a straight-in shot with an object ball, and place the cue ball at various distances
away from the object ball.  (Use a striped ball in place of the cue ball so that the spin can
be easily observed.)  For a given distance and shot speed, shoot with just the right amount
of backspin so that the cloth friction has time to remove the spin.  The cue ball should
stop exactly upon impact, and roll afterwards neither forward nor backward.  For a fixed
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distance, the slower the shot speed, the more extreme will be the backspin required to
achieve a stun shot impact.  Experiment with stun shots on different tables.  Sticky tables
(high sliding friction between the cloth and ball) require more extreme backspin than
slick tables to achieve stun.  Stun shots are important for position play and, as discussed
in later sections, for judging accurate carom angles.

Problem 2.3: What is the shape of the path taken by a ball before natural roll is
achieved?  What is the shape of the path after natural roll is achieved?
Answer: Integration of F = M ˙ V  twice gives

1
2 Ft2 = M(q − q0 − V0t)

q = q0 + V0t +
1

2M
Ft2

Since the choice of coordinate axes is arbitrary, assume that the axes origin corresponds
to t=0, and that the axes are oriented so that the x-component of the sliding force is zero.
The coordinates of the path are then given by

x
y

 
 

 
 =

V0x
V0y

 
 
  

 
 t +

1

2M
t2 0

F0y

 
 
  

 
  .

Because of the choice of axes, the velocity in the x-direction remains unchanged over
time.  Using the relation t=x/V0x to eliminate t from the y part of this equation gives

y =
V0y

V0x

 

 
 

 

 
 x +

F0y

2MV0x
2

 

 
 

 

 
 x2

which may be recognized as an equation for a parabola.  While the ball is sliding on the
cloth, the path of the ball is a parabola, the shape of which is determined by the initial
velocity and by the frictional force between the ball and the cloth.  This frictional force
remains unchanged in both direction and magnitude as long as the ball is sliding.  This
applies to the paths taken by balls after collisions with cushions or with other balls, and
also to the cue ball when struck with an elevated cue stick (i.e. masse or semi-masse
shots).  The ball is accelerated by the sliding force until natural roll is achieved.  After
natural roll is achieved, there is no sideways force exerted to further accelerate the ball,
so the ball rolls in a straight line.

Problem 2.4: When a ball achieves natural roll, what fraction of its kinetic energy is
translational and what fraction is rotational?
Answer: The total kinetic energy is

T = T(Trans) + T(Rot) = 1⁄2MV2 + 1⁄2I 2 = 1⁄2MV2 + 1⁄5MV2 = 7⁄10MV2.
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This gives
T(Trans)

T
= 5

7
T(Rot )

T
= 2

7

Now that the total kinetic energy expression for a natural roll ball is known, the
issue of rolling resistance can be examined in more detail.  The previous conservative
model of a ball rolling up an inclined plane will be used to understand the various forces
involved.  In the case of a ball rolling without slipping up an inclined plane, the result of
these forces is known, namely that R  =V is maintained as the ball slows down, but the
forces themselves required to achieve this result are not obvious.  In order to apply
Newton’s laws directly, these forces must be known beforehand.  Therefore Lagrange’s
equations of motion will be used.  The generalized coordinates will be taken to be the
distance up the incline s, the angular rotation of the ball , and the undetermined
multiplier associated with the constraint equation, .  The expressions for the kinetic
energy, potential energy, and the constraint equation are

T =  1⁄2MVs2 + 1⁄2I 2

U =  sMgsin( )
f(s, ) = R – s = 0

The Lagrangian is L=T–U+ f, and the equations of motion are determined from the

equation, 
L

qi
−

d

dt

L
˙ q i

= 0 , for the three coordinates s, , and .  Substitution gives the

three equations
–Mgsin( ) –  – M ˙ V  s = 0

R – I ˙  = 0
R – s = 0 .

Differentiating the last equation twice gives R ˙ = ˙ V s.  Solving the second equation for
the undetermined multiplier gives I ˙ V s/R2.  Substitution into the first equation then
gives

M ˙ V s = – 1 + I
MR2( )−1

Mgsin( ) =  –5⁄7 Mgsin( )

        = –Mgsin( ) + 2⁄7Mgsin( )                   [rolling without slipping]
        = Fgravity  + Fconstraint

If, instead of rolling without slipping, the ball were allowed to slide freely, then Newton’s
equation of motion in this coordinate system would have been simply

M ˙ V s = Fgravity  = –Mgsin( )                   [with free slipping]
Therefore the sliding ball is seen to slow down faster than the rolling ball, all other things
being the same.  The effective force arising from the static coefficient of friction between
the ball and the incline is seen to be 2⁄7Mgsin( ), and this force is directed uphill,
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opposing the gravitational force.  Because there is no sliding associated with this
frictional force, there is no energy dissipation in this model system.  The only kinetic
energy lost is that associated with the corresponding increase in potential energy.  As was
done in the previous section for a sliding block, an association with the effective slope
and a coefficient of friction is made, µ(rolling) =sin( ).  In the previous section, an

equation of motion was assumed of the form µeff
(rolling)

g=- ˙ V s.  It is now seen that this

assumption was correct, with the association

µeff
(rolling)

 = 1 + I
MR2( )−1

sin( ) =  1 + I
MR2( )−1

µ (rolling)  = 5⁄7µ (rolling)

When should µ eff
(rolling)

 be used, and when should µ (rolling) be used?  The answer is that

for a rolling billiard ball, it doesn’t matter which coefficient of friction is used, provided
of course, that the corresponding equation of motion is used.  The use of the equation of
motion involving µ(rolling)  has the advantage that once it has been determined for one
object, the same value can be used for other objects made of the same material but with
different shapes, such as rolling cylinders, rolling tubes, rings, or hollow balls.  The

quantity µ(rolling)  is therefore, in some sense, more fundamental than is µeff
(rolling)

.  The

equation of motion for these objects will of course be slightly different, due to the
dependence on the moment of inertia of the equations of motion, as demonstrated in the
following problem.

Problem 2.5: The table used in P1.5 is moved to the surface of the moon.  The billiard
ball is replaced with a cylinder made of the same material as a billiard ball.  How long
will it take for the cylinder to roll the length of the table?
Answer:  First determine µ(rolling)  for the table from the previous data:

µ (rolling)  = 7⁄5µeff
(rolling)

 = 
7

5 ⋅96.7
 = 0.0145

For a solid cylinder, I=MR2/2.  gmoon=63.8in/s2, about 1/6 the gravity of the earth.  The
equation of motion is

˙ V  = – 1 + I
MR2( )−1

gmoonµ (rolling)

Integration twice over time, then solving for t gives

t =
2 1+ I

MR2( )d
gmoon rolling

=
3 ⋅ 97.75in

63.8(in / s2 ) ⋅ 0.0145
= 17.8s

Solving the same equation for a ball gives t=17.2s, a result that may also be obtained
simply by scaling the earth time, 7.00s by the factor gearth gmoon = 2.46 .  Therefore,

most of the lag time difference is due to the different gravitational forces of the earth and
moon, with a smaller difference due to the different moments of inertia of the cylinder
and ball.
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3. Cue Tip/Cue Ball Impact
Consider the situation in which a level cue stick strikes the cue ball.  The cue tip

applies a force to the cue ball at some point on the surface of the ball.  This contact time
is not instantaneous, but it is very short.  Unlike a ball-to-ball impact (characterized by
small tangential frictional forces and therefore resulting in a force that is directed
essentially between the centers of the balls), the cue tip does not slip on the cue ball
(except of course in a miscue situation).  With these assumptions, the force is directed
along the direction of the cue shaft.  The angular acceleration from this force is given by
the equation r × F = I ˙ .  When a level cue stick strikes the cue ball, the angular
acceleration along the direction of force, F/|F|, is given by

˙ ⋅
F
F

I−1 r × F( )( ) ⋅
F
F

= 0   .

There is no component of angular acceleration around the axis of the cue stick, so there is
no sideways frictional force between the ball and the cloth; the cue ball slides in a straight
line in the direction of the cue shaft, while rotating about either or both the vertical axis
(i.e. sidespin) and the horizontal axis perpendicular to the cue shaft (i.e. topspin or draw).
This results from the fact that the moment of inertia for a pool ball is proportional to the
unit matrix.  (If the inertia tensor of an object is not proportional to the unit matrix, e.g. if
the ball has an embedded off-center weight, then it will in general curve as it slides or
rolls instead of moving in a straight line.)

First consider the case in which the cue tip strikes the cue ball exactly in the
center.  In this situation r × F = 0 = I ˙ , and there is no angular velocity imparted directly
to the cue ball.  The only thing that occurs is a transfer of linear momentum and
translational energy between the cue stick and the cue ball.  It will be assumed that the
contact time is so short that the hand/skin/cuestick effects can be ignored.  That is, at the
very beginning of the contact time, the cue stick slows down and starts moving slower
than the hand, and the skin begins to tighten, but by the time any significant extra force is
exerted on the cue stick, the cue ball has already departed and lost contact with the cue
tip.

Problem 3.1: What is the relation between the cue stick energy and velocity, the length
of the stroke, and the applied force?  (Assume a constant force is applied by the hand to
the cue stick during the stroke.)
Answer:  Integration of the equation F = Ms

˙ V  over time gives Ft = Ms V − V0( ) = MsV

where F is the force applied to the stick and Ms is the mass of the cue stick.  Integration

again gives 1
2 Ft2 = Ms x − x0( ) = Msd  in which d is the distance of the stroke.  Solving

the first equation for t and substitution into the second gives for the kinetic energy
T = 1⁄2MsV2 = Fd.

Solving for V gives
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V =
2Fd

Ms

The cue stick energy is proportional to the stroke length and to the applied force, and the
cue stick velocity is proportional to the square root of the stroke length and of the applied
force.  It is important to note that in the expression T=Fd, the energy does not depend on
the mass of the cue stick.  This means that for a given force and stroke length, a light cue
stick will acquire the same energy as a heavy cue stick.

Problem 3.2: What is the relation between the final cue ball velocity and initial and final
cue stick velocity, and the mass of the cue stick?
Answer: Before the impact, only the cue stick has momentum MsV0 and energy 1⁄2MsV02.
After the collision, both the cue stick and the cue ball have energy and momentum.
Conservation of momentum and energy, assuming a center-ball impact, give

MsV0 = MsVs + MbVb
1
2 MsV0

2 = 1
2 MsVs

2 + 1
2 MbVb

2   .

Solve the first equation for Vs, and substitute into the second equation to obtain

Vb =
2Ms

Ms + Mb
V0

Vs =
Ms − Mb

Ms + Mb
V0

Vb

Vs
=

2Ms

Ms − Mb

A typical cue stick weighs 18oz, or about three times the weight of a pool ball.  In this
case, Vb=3⁄2V0, Vs=1⁄2V0, and Vb/Vs=3, so the cue ball is moving about 3 times faster than
the cue stick immediately after impact.  If the masses were exactly equal (a very light cue
stick), then the final ball velocity would be equal to the initial stick velocity, and the final
stick velocity would be zero; all of the energy would be transferred from the stick to the
ball.  If the stick mass were less than the ball mass, then the final stick velocity would be
in the opposite direction to the initial stick velocity; that is, the stick would bounce back
from the cue ball.  Under no condition does Vb=Vs; that is, there does not exist a
combination of cue stick mass and ball mass such that both are moving forward after
impact at the same velocity.

Problem 3.3: What is the fraction of energy that is transferred from the cue stick to the
cue ball as a function of the stick and ball masses?
Answer:  Using the final stick and ball velocities from P3.2 gives

Tb = 1
2 MbVb

2 =
4MbMs

Ms + Mb( )2
1
2 MsV0

2( ) =
4MbMs

Ms + Mb( )2 T0

Let s=Ms/Mb be the stick to ball mass ratio.  Then the ratio of energies is given by
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Tb

T0
=

4 s

1+ s( )2

When s=1, then this energy ratio is unity, in agreement with the conclusions in P3.2.
When there is a mismatch of masses, then the efficiency of transfer of energy in the
collision will decrease.

If a 6oz cue stick results in optimal transfer of energy, then why not use one?  If it
is not optimal, then what is?  There are two separate components to the answer.  First, it
is not always the most efficient transfer of energy that is important, but rather control of
the energy that is transferred to the cue ball.  It is easier to control a heavier stick than an
extremely light one, and the inherent inefficiency from the mass difference is a way to
reduce errors in the speed of the cue ball.  A possible exception to this is the break shot in
open-break games such as 8-ball and 9-ball in which the maximization of cue ball energy
is desired.  This leads to the second component of the answer.

As the bicep contracts to accelerate the cue stick on the break stroke, both the
mass of the forearm and cue stick mass are accelerated.  To understand how this affects
the final object ball energy in at least a qualitative manner, some simplifying assumptions
may be imposed.  Assume that the forearm is a thin rod of uniform mass.  The moment of
inertia of the forearm would be MfL2/3 where Mf is the mass of the forearm and L is the
forearm length.  The moment of inertia of the cue stick about the elbow is MsL2.  As both
the arm and stick are accelerated about the elbow by a constant force F for an angle , the
total energy is given by T=FL .  For a given stroke length L and force F, the total
kinetic energy is independent of the cue stick and forearm masses.  Writing the two parts
of the energy explicitly gives

T = T0 + T f = 1
2 MsL 2 + 1

6 M f L 2 = T0 1 +
M f

3Ms

 

 
 

 

 
 

where T0 is the cue stick energy.  Although T, the total kinetic energy of the arm and
stick, is fixed by FL , the fractional division of this energy between the stick and arm is
seen to be determined by the mass ratio.  It is interesting in this expression that the only
important factor is the mass ratio of the forearm and stick; the length of the forearm does
not matter, at least within the current set of simplifying assumptions.  This means that the
optimal cue stick weight will be the same for tall players as for short players, provided
the forearm masses are the same.  Some players pivot their arm from the shoulder rather
than the elbow on the break shot.  The above analysis indicates that the additional arm
length is irrelevant, but with this technique the entire arm mass rather than simply the
forearm mass must be included into the Mf term.  Whether this is beneficial or not
depends also on the relative forces applied by the different muscle groups involved in the
two stroke techniques.
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The dilemma is now apparent from the above equation and P3.3.  In order to
achieve the highest transfer of energy from the cue stick to the cue ball, a very light 6oz
cue stick would be necessary.  But in order to maximize the cue stick energy T0 for a
fixed total energy T during the stroke, a very large cue stick mass would be necessary.
Consequently, maximization of the cue ball energy requires some kind of compromise
between these two extremes.

The quantity T0 is the cue stick energy at the end of the stroke, and P3.3 gives the
relation between T0 and the cue ball energy Tb.  Substitution of this relation gives

Tb

T
=

4MbMs
2

Mb + Ms( )2
Ms + 1

3 M f( ) =
4 s

2

1 + s( )2
s + 1

3 f( )
In the last expression, s=Ms/Mb is the ratio of the stick mass to ball mass, and f=Mf/Mb

is the forearm to ball mass ratio.  For a given forearm mass, the optimum stick mass is
determined by differentiating the above expression with respect to s, setting the result to
zero, and solving for s as a function of f.  The final expression is

s (opt ) = 1
2 + 1

4 + 2
3 f

which is an equation for a parabola.  When f=0, it is seen that s(opt)=1, and the optimal
cue stick mass would be 6oz, a result which agrees with the conclusions from P3.3.  A
light forearm mass might be 24oz, which corresponds to f=4, s(opt)=2.2, and an optimal
cue stick mass of 13.2oz.  A typical forearm mass might be 36oz, which corresponds to an
optimal stick weight of 15.4oz.  A heavy forearm mass might be 64oz, which corresponds
to an optimal stick weight of 19.3oz.  A person who breaks with his entire arm, pivoting
at the shoulder rather than the elbow, might have an arm mass of 150oz, which
corresponds to an optimal stick weight of 27.2oz.

In the last few years, many professional 9-ball players have switched from heavy
break cues to lighter break cues.  These players may still use a typical 19-20oz cue for
their normal strokes in a game, but they break with a lighter 15-18oz break cue.  Break
cues of this weight are consistent with the above equations, elbow pivots rather than
shoulder pivots, and slim to medium body types.  The actual breaking technique used by
these players is more complicated than that considered above, and involves pivots about
both the shoulder and the elbow.

Problem 3.4: What is the spin/speed ratio of the cue ball immediately after contact as a
function of the vertical cue tip contact point?
Answer: For simplicity assume that the contact point is in the vertical plane through the
center of the cue ball.  When the cue tip applies a force in an off-center hit, the force
accelerates the center of mass, and the resulting momentum is p=MV.  The linear

momentum is given by the expression p = F( ′ t )d ′ t 
0

t

∫  in which the force is not constant

during the contact time and t is the (very short) contact time between the cue tip and the

Pool Physics 22 Draft: 29-Feb-96



cue ball.  (An ideal impulsive force is one that integrates to a constant momentum change
as the contact time decreases.  A cue tip contacting a cue ball and a hammer driving a nail
are two examples of nearly ideal impulsive forces.)  Integrating the angular acceleration
equation in the same way gives pRsin( )=pb=I .  The quantity b=Rsin( ) is the impact
parameter, and is the vertical offset away from a center-ball hit.  b is positive for an
above-center hit, zero for a center ball hit, and negative for a below-center hit.
Eliminating the linear momentum p from these two sets of equations gives

MV =
I

b
=

2MR2

b

J =
R

V
 
 

 
 =

5

2

b

R
 
 

 
 

If b=0, then the angular velocity  is also zero, which means that there is no spin
imparted with a center-ball hit of the cue tip.  If the cue tip hits above center, then b is
positive and y is positive, which means that the ball is rolling in the same direction as
the velocity.  If the cue tip hits below center, then b is negative and  is negative, which
means that the cue ball is spinning in the opposite direction as in a draw or drag shot.
Note that the above equations are valid only for -R≤b≤R, or else b is meaningless; the cue
tip would miss the cue ball.  For practical reasons, b is restricted even more due to the
fact that contact points close to the edge of the cue ball result in miscues (see P1.7).
Although determined above for angular velocity about the horizontal axis, the same
equation applies to angular velocity about the vertical axis resulting from a horizontal
impact parameter.

Problem 3.5: At what contact point bNR will the cue ball have natural roll?
Answer: Natural roll occurs when V=R   Substitution into the above equation gives

bNR = 2
5 R

Noting that the height above the cloth is given by z=R+b, this point may also be written

zNR = 7
5 R = 7

10 D

where D=2R is the height of the ball.  This point is actually rather high on the cue ball,
and it is risky to attempt to hit higher than this due to the possibility of miscuing (see
P1.7).  Sidespin that is imparted to the cue ball with a level stick has no effect on natural
roll, so the set of points on the cue ball for which natural roll is achieved immediately
with no sliding are along the horizontal line at a height 7⁄10D above the table surface.

Exercise 3.1: Experiment with shots involving natural roll impact points.  Use a striped
object ball in place of the cue ball.  Orient the ball so that the plane defined by the stripe
center is tilted at various angles away from vertical.  The cue stick should be held as level
as possible and should be within the plane defined by the stripe.  The cue tip contact point
should be exactly in the center of the stripe at a height 7⁄10D above the table.  When
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executed correctly, the stripe will appear “stationary” as the ball rolls.  A small error in
the contact point, or in the ball setup, will result in a small wobble of the stripe on the
rolling ball.

y

z

y

z
a b

Fig. 3.1. The cue tip contact points corresponding to various arbitrary
sidespin/speed ratios are denoted by the thin lines.  Figure a denotes
constant spin/speed ratios immediately after contact with the cue tip; these
are vertical straight lines.  Figure b denotes constant spin/speed ratios after
natural roll is achieved; these are straight lines that all intersect at the point
(y,z)=(0,0).  In both cases, the larger offsets from the center are associated
with higher spin/speed ratios.

Problem 3.6: Which cue tip contact points will result in the same sidespin/speed ratios
immediately after contact with the cue tip?  Which contact points will result in the same
sidespin/speed ratios after the cue ball achieves natural roll?
Answer: Consider the coordinate axes in Fig. 3.1.  The z-coordinate is the height above
the cloth, and the y-coordinate is the distance away from the vertical plane through the
center of the ball.  by =y is the horizontal impact parameter, and bz=(z-R) is the vertical
impact parameter.  Denote the point of contact with coordinates (y,z).  In terms of the
linear momentum p, the initial forward velocity and forward rotation are given by

V0 =
p

M

0y =
p(z − R)

I
=

5p(z − R)

2MR2   .

The forward rotation depends only on the height of the cue tip contact point z and not on
the sideways displacement y.  Upon achieving natural roll, the final forward velocity (see
P2.2) is given by

VNR = 5
7 V0 + 2

7 R 0y =
5p

7M
+

5p(z − R)

7MR
=

5p

7M

z

R
 
 

 
   .

The sidespin (i.e. the angular velocity about the vertical axis) is assumed to be unchanged
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by the frictional forces of the sliding ball.  From P3.4, the initial, and final, sidespin about
the z-axis is given by

z =
5y

2R2
 
 

 
 V0 =

5yp

2R2M
  .

The sidespin depends only on the horizontal displacement, y.  The sidespin/speed ratio for
the initial velocity is given by

Jz =
R z

V0
=

5y

2 R

This ratio depends only on the horizontal impact parameter y, and is independent of the
ball speed V0 and vertical contact point z.  The same ratio would occur with a soft hit as
with a very hard hit.

Taking the ratio of the sidespin and final natural roll velocity gives

Jz,NR =
R z

VNR
=

7

2

y

z
 
 

 
 

where Jz,NR is the desired spin/speed ratio.  The set of points (y,z) that correspond to the
same Jz,NR are given by the straight line defined by

z =
7

2Jz,NR

 

 
  

 
 y

The lines corresponding to several Jz,NR  are shown in Fig. 3.1.  It is interesting that
exactly the same effect may be obtained by striking the cue ball at any point on a given
straight line, provided the cue ball has sufficient time to achieve natural roll through
sliding friction.  For a desired final velocity, a higher initial velocity is required for small-
z contact points in order to overcome the drag.  Note that higher sidespin/speed ratios
(larger Jz,NR) are associated with straight lines closer to horizontal, and smaller ratios
(smaller Jz,NR) are associated with more vertical slopes.
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Line of constant
spin/speed ratio
contact points

Point of minimal
displacement from center

“Small Circle”
of aim points

y

z

(y0,z0)

(0,R)

(0,0)

R-z0

Fig. 3.2. The set of points that correspond to the minimal displacements
from center ball for various spin/speed ratios after natural roll is achieved
fall on a small circle of radius R/2 that touches the bottom point of the cue
ball.

Problem 3.7: Of the set of points (y,z). that correspond to a constant natural-roll
spin/speed ratio Jz,NR, which point (y0,z0) corresponds to the smallest displacement from
center ball?
Answer: Consider Fig. 3.2.  All the points a given distance from center ball will form a
circle.  The smallest circle that touches the desired straight line, as determined in P3.6,
will define the smallest displacement that gives the desired spin/speed ratio.  The point at
which this smallest circle touches the appropriate straight line is denoted (y0,z0).  At this
point, the curve defining the circle and the straight line will be tangent, and the three
points (0,0), (0,R), and (y0,z0) will form a right triangle.  Let  be the angle away from
vertical as indicated in Fig. 3.2.  The tangent of this angle is given by tan( )=y0/z0, and
also by tan( )=(R-z0)/y0.  Equating these two expressions gives

y0
2 = z0(R − z0 ).

Completing the square on the right hand side of this equation and rearranging gives

y0
2 + z0 − 1

2 R( )2
= 1

2 R( )2
 .

This is recognized as the equation for a circle of radius 1
2 R  centered at the point (0, 1

2 R ).

Contacting these points with the cue tip is called aiming on the small circle.  When a
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player aims on the small circle, and the cue ball subsequently achieves natural roll, the
desired spin/speed ratio Jz,NR is achieved with the minimal displacement from center ball.
It is possible to achieve much higher spin/speed ratios when the cue ball is allowed to
achieve natural roll than the ratios that can be obtained immediately after cut tip contact
as demonstrated in the following problem.

Problem 3.8:  What is the natural roll sidespin/speed ratio, R z/VNR, for the equatorial

cue tip contact point P1=(y1,z1)= 1
2

R, R( )?  What is the natural roll sidespin/speed ratio

for the contact point P2=(y2,z2)= 1
2 R, 1

2 R( )?  At what contact points P3=(y3,z3) would the

initial spin/speed ratio, R z/Vo, be the same as the natural roll spin/speed ratio of P2?
Answer: From P3.6 the natural roll spin/speed ratio for P1 is given by

R z

VNR

 
 
  

 
 =

7

2

y1

z1

 
 
  

 
 =

7

2 2
= 2.475

The natural roll spin/speed ratio for P2 is

R z

VNR

 
 
  

 
 =

7

2

y1

z1

 
 
  

 
 =

7

2
= 3.5

Although the displacements away from center of these two points are the same, namely
R 2 , the sidespin/speed ratio for the second point is over 41% larger than the first

point.  The second point P2 is on the “small circle” and therefore results in the maximal
natural roll sidespin/speed ratio for this displacement distance.

In order to achieve a comparable initial sidespin/speed ratio
7

2
=

R z

V0
=

5

2

y

R
 
 

 
 

P3 = (y3 ,z3) = 7
5 R,z( )

However, the set of points P3 are not on the cue ball.  Therefore, it is impossible to
achive such a large sidespin/speed ratio without taking advantage of the drag to reduce
the ball velocity.  For practical purposes, a sidespin/speed ratio of 3.5 is about as large as
can be attained with a cue tip impact with a level cue stick.  Larger ratios can be achieved
only with elevated cue stick strokes (masse) or with collisions involving other balls.

It is sometimes convenient to think of the cue ball spin and velocity at any
moment in time for a sliding ball in terms of an “effective cue tip contact point”.  That is,
for a given linear and angular velocity of a cue ball, there exists a contact point on the cue
ball at which, if the cue tip where to strike a stationary ball at that point, with the correct
velocity, the result would be to reproduce exactly the same spin and speed.  Because the
linear and angular velocities change as the ball slides, the effective contact point is time
dependent.  From P3.6, the horizontal and vertical components of the spin are related to
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the vertical and horizontal components of the impact parameter of the cue tip contact
point according to

5

2

by
eff

R

 

 
 

 

 
 =

R z

V
=

R 0z

V0 − gt( )

5

2

bz
eff

R

 

 
 

 

 
 =

R y

V
=

R 0y + 5
2 gt( )

V0 − gt( )
where the time dependence of the angular and linear velocities due to the cloth friction on
the sliding ball from Section 2 have been used.  The origin t=0 is taken in the above
equations to be the time at which the cue tip strikes the ball.

Problem 3.9:  Show that the set of effective contact points corresponding to byeff(t) and
bzeff(t) for a sliding ball lie on a straight line passing through the coordinate points
(y,z)=(0,0) and (y,z)=(byeff(0),R+bzeff(0)).
Answer: Let bzeff be considered as a function of byeff and defined parametrically through
the time variable t.  Solve the first equation above for t in terms of byeff, and substitute
into the second to give

R + bz
eff t( )( )

by
eff t( )

=
R + bz

eff 0( )( )
by

eff 0( )
The right hand side of this equation is time independent.  Therefore, the slope of the
curve defined by the points (y,z)=(byeff(t),R+bzeff(t)) is a constant, independent of time,
and the set of time-dependent effective contact points lie on a straight line.  The distance
(R+bzeff(t)) is the height of the tip contact point above the cloth as seen for example in
Fig. 3.2, and the distance byeff(t) is the horizontal tip displacement.  Therefore, the line
passing through the point (0,0) at the bottom of the ball to the initial point
(byeff(0),R+bzeff(0)) has the same slope as the rest of the line.  The line segment of
effective contact points ends when bzeff(t)=2⁄5R, at which time the ball achieves natural
roll.

The result of P3.9 allows the player to compensate accurately for the effects of
table friction on the spin axis with the following approach.  First determine the desired
spin axis at the eventual position of the cue ball.  A stun shot for example, which is a
frequent goal, would have a vertical spin axis at the time the cue ball collides with the
object ball.  This spin axis corresponds to some effective contact point (byeff(t),R+bzeff(t)).
In the case of a stun shot, this point would have coordinates (byeff(t),R) and correspond to
pure sidespin.  The player must then estimate, based on shot speed and the cloth friction,
the required vertical offset below center in order to achieve a stun shot.  Let this vertical
distance be denoted .  The player then draws an imaginary line from the point
(byeff(t),R), corresponding to the desired target spin state of the cue ball, to the point (0,0).
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The point on that imaginary line that corresponds to (byeff(0),R- ) is the desired contact
point.  Other final spin states would be estimated in the same manner.  The straight line is
always drawn from the final effective contact point to the origin (0,0), and the player
works backward in time, so to speak, from the final spin state of the cue ball to the initial
tip/ball contact time.  If, during this process, the actual contact point (byeff(0),bzeff(0)) is
judged to be outside the boundary at which miscues begin to occur (see P1.7), then the
desired shot is not possible, and the player should seek other alternatives.

Problem 3.10: What is the relation between the cue stick velocity immediately before
contact, the cue ball velocity immediately after contact, and the impact parameter b?
(assume that the total kinetic energy is conserved)
Answer: Conservation of linear momentum and kinetic energy give

MsV0 = MsVs + MbVb
1
2 MsV0

2 = 1
2 MsVs

2 + 1
2 MbVb

2 + 1
2 I b

2

= 1
2 MsVs

2 + 1
2 + 5

4
b

R
 
 

 
 

2 

 
  

 
 MbVb

2

Solve the first equation for Vs, and substitute into the second equation to obtain

Vb =
2V0

1 + Mb
Ms

+ 5
2

b
R

 
 

 
 

2

It may be verified that this expression agrees with that of P3.2 when b=0.  It may now be
understood why it is desirable to avoid spin on the cue ball during the break shot.  For a
given cue stick energy, or velocity V0, any spin corresponding to nonzero b has the effect
of reducing the cue ball velocity and the translational kinetic energy; the maximum cue
ball speed is achieved with a centerball b=0 contact point.  The ratio Vb/V0 is plotted as a
function of impact parameter for some selected ball/stick mass ratios in Fig. 3.3.
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 
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Fig 3.3.  The ratio of the cue ball velocity Vb to the before-collision cue
stick velocity V0 is shown as a function of the vertical impact parameter
(b/R) for some selected ball/stick mass ratios.

Problem 3.11:  What is the vertical impact parameter that maximizes the ratio VNR/V0?
Answer: From P2.2, P3.6, and P3.10, the natural roll velocity is given by

VNR = 5
7 Vb + 2

7 R b = 10
7( )

1 +
b

R
 
 

 
 

1+ Mb
Ms

+ 5
2

b
R

 
 

 
 

2

 

 

 
 
 

 

 

 
 
 
V0

Solving for the velocity ratio, differentiating with respect to b, setting the result to zero,
and simplifying gives

b

R
 
 

 
 max VNR

= −1 +
7

5
+

2

5

Mb

Ms

 
 
  

 
 

For a 6oz ball and an 18oz stick, the optimal impact point is given by
b

R
 
 

 
 max VNR

  = 0.238            [Ms/Mb=3]

and for a 24 oz stick the optimal impact point is
b

R
 
 

 
 max VNR

  = 0.225            [Ms/Mb=4]

This range includes most common stick weights and shows that the optimal impact point
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is only weakly dependent on the stick weight in this range.  In both cases, the impact
point is between centerball b=0 and the natural roll height b=2⁄5R.  The initial cue ball
velocity is maximized at b=0, but 2⁄7 of this velocity is lost upon achieving natural roll to
sliding friction; at b=2⁄5R there is no velocity loss due to sliding friction, but the initial
velocity is relatively small due to the energy and momentum transfer conditions between
the stick and ball.  The above contact point is the optimal compromise between these two
extremes.  Maximization of the natural roll velocity is the same as maximizing the natural
roll energy, and is the same as maximizing the distance that the ball rolls before stopping
due to rolling resistance.  Because this distance is maximized, this also means that the
distance is relatively insensitive to small deviations of the contact point away from this
optimal value.  This is most useful when cue ball placement is of utmost importance such
as, for example, during the lag shot at the beginning of a match.  The ratio VNR/V0 is
plotted as a function of impact parameter for some selected in Fig.
3.4.
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Fig. 3.4.  The ratio of the final natural roll cue ball velocity Vb,NR to the
before-collision cue stick velocity V0 is shown as a function of the vertical
impact parameter (b/R) for some selected ball/stick mass ratios.  For a
given ball/stick mass ratio, the optimal contact point for a lag shot is
determined by the flat region near the curve maximum.
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4. Collisions Between Balls
Consider the motions of two colliding balls.  One ball is assumed to be moving

before the collision, and both balls are assumed to be moving afterwards.  For this
discussion, assume that the initially moving ball is the cue ball, and the initially stationary
ball is an object ball.  As the two balls collide in an off-center hit, the frictional forces
acting tangential to the surfaces are relatively small (e.g. compared to the frictional forces
between a ball and the cue tip).  All of the remaining force is directed along the line
between the centers of the balls.

Vb

Vc

V0=Vb+Vc

Vc

C

D

Fig. 4.1. Pictorial representation of the conservation of momentum vector
relation V0=Vb+Vc.  The angles C and D are supplementary and satisfy
the relation C+D=π.

Consider first the ball motions just before the collision and just after the collision;
in this situation, the friction between the cloth and the sliding/rolling balls has not had
time to affect the ball trajectories.  Linear momentum (p=MV) is conserved in both the x-
and y-coordinate directions.  Represented with vectors, the vector sum of the final
momentum of the two balls is equal to the initial momentum of the cue ball.  Eliminating
the mass M of the balls, results in the vector relation V0=Vb+Vc between the initial and
final velocities.  This relation is shown pictorially in Fig. 4.1.  The final velocity of the
cue ball Vc has been drawn twice: once with its base common to that of the Vb vector,
which is consistent with both balls departing from the same collision point on the table,
and again with its base at the end of the Vb vector to show pictorially that V0=Vb+Vc.
The angles D and C are supplementary and are related by (in radians) C+D=π, and
consequently, cos(C)=-cos(D).

Pool Physics 32 Draft: 29-Feb-96



In addition to momentum, energy is also conserved in this collision to a good
approximation.  The relatively small amount of energy that is lost is turned into sound or
heat within the balls.  An elastic collision is one in which energy is assumed to be
conserved, so this energy loss will be denoted Einelastic.  As discussed in the previous
sections, there are two kinds of kinetic energy, translational and rotational, associated
with each ball.  Equating the energy before and after the collision gives

T0(Trans) + T0(Rot) = Tc(Trans) + Tc(Rot) + Tb(Trans) + Tb(Rot) + Einelastic

Collecting all the T(Rot) terms together, and multiplying by 2/M gives the relation

V0
2 = Vb

2 + Vc
2 +∆ elastic +∆ inelastic = Vb

2 +Vc
2 +∆ total

with

∆elastic =
2

M
Tc(Rot ) + Tb( Rot) − T0( Rot)( )

∆inelastic =
2

M
Einelastic

The term elastic  depends on the total change of rotational energy.  The contribution

elastic may be positive, zero, or negative, but the term inelastic is always positive, since
it represents an energy loss in the collision process.  There are two types of contributions
to Einelastic, the first type of energy loss is due to the frictional forces of the sliding balls.
These frictional forces result in the exchange of energy between the various translational
and rotational components.  Just as in the case of the simple sliding block, the frictional
forces are intimately related to the inelastic energy loss; without this inelastic energy loss,
there would be no sliding friction.  As will be seen in the following discussions, this
inelastic energy loss can be determined by analysis of the resulting momentum exchange
between the balls.  Other contributions to the inelastic energy loss involve the imperfect
transfer of energy between the balls.  For example, the sound made by the colliding balls
represents a transfer of kinetic energy from the collision process to the surroundings.
This energy loss would occur even in the absence of sliding frictional forces.  In the
present discussion, this latter type of energy loss will not be considered quantitatively in
the analysis.  With this simplification, both the elastic and inelastic contributions to total

are assumed to be associated with the tangential forces of sliding friction.
The law of cosines for an arbitrary triangle with sides a, b, and c with

corresponding angles A, B, and C is
c2 = a2 + b2 -2ab cos(C)

This allows the angles of a triangle to be related to the lengths of the three sides.  In
particular, the sides of the triangle resulting from the pictorial representation of the
conservation of momentum relation may be related to the departure angle.  Comparing
the law of cosines with the above velocity equation gives the relation

cos(C) =
−∆ total

2 Vb Vc
 = –cos(D)
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between the angles  C and D and the change of translational energy term total.  If there is
no translational kinetic energy loss during the collision of the balls, then total=0,
cos(C)=0, and C=π⁄2 is a right angle (i.e. 90 degrees).  In this case, the law of cosines
reduces to the familiar theorem of Pythagoras.  If C=π⁄2, then D=π⁄2 and the two balls
depart at exactly a right angle.  In this initial discussion it will be assumed that the balls
are rotating about the vertical axes only; the more general situation is examined later.  If
there is no rotational energy change during the collision, then elastic=0.  There are three
situations in which there will be no total rotational energy change during a collision.
First, if there is no friction between the balls, then there will be no tangential forces acting
at the point of contact.  This is, of course, an approximation, but for many shots such an
approximation is sufficient, and in any case it defines a convenient reference point.  The
second situation in which no spin change occurs is when the cue ball has just the right
amount of outside spin so that the ball surfaces are not moving relative to each other
during the (very short) collision time.  In this case the cue ball spin is unchanged, and the
object ball acquires no spin during the collision.  The third situation in which no total
rotational energy change occurs is when the cue ball has just the right amount of inside
spin so that all of the cue ball spin is transferred to the object ball, and the cue ball departs
with no spin.  The first situation is an ideal, and occurs only with no friction between the
colliding balls; total=0 in this case for all collision situations.  The second situation is
independent of the ball friction, but depends on matching exactly the outside spin and the
cut angle; total=0 for this situation since both components vanish when there is no
friction.  The third situation depends on matching the amount of inside spin with the
friction between the balls and the cut angle; since there are accelerations associated with
the frictional forces, there is a nonzero inelastic component, total≠0, and therefore the
departure angle will differ from π⁄2.

To appreciate the importance of spin transfer, consider a cut shot with ball
friction, when the cue ball has no spin initially.  In this case, the T0(Rot) term will be zero,
but both Tc(Rot) and Tb(Rot) will be nonzero.  The cue ball acquires some sidespin by
rubbing against the object ball, and the initially motionless object ball acquires some
sidespin by rubbing against the cue ball.  In this case, both elastic>0 and inelastic>0, the
angle C will be larger than π⁄2, and the angle of departure D will be smaller than a right
angle.  In actual practice this is a small effect, in the neighborhood of 2-4 degrees
depending on how sticky are the pair of colliding balls, but a 4 degree angle, over 8 feet
results in a deviation of 6.7", or about half a diamond on a 9' table (tan( )=d/L with
deviation angle , distance L, and deviation distance d).  When referring to the resulting
object ball deviations, this effect is called collision-induced throw, and clearly this must
be accounted for, to some extent, on any but the most trivial of shots.

Problem 4.1: What are the conditions in which elastic will be positive, zero, and
negative?  (assume all spins are about the vertical axes)
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Answer:  Substituting the rotational energy expression gives

∆elastic = 2
5 R2

c
2 + b

2 − 0
2( )

where all angular velocities are relative to the vertical axes of each ball.  However, any
change of angular velocity in the cue ball must be compensated exactly by a
corresponding change in the object ball angular velocity, since the frictional forces on
each ball are equal but opposite in direction.

0 = c − b  .

Substitution of this relation gives

∆elastic = 4
5 R2

b c  .

When the final spins of both balls are in the same direction (i.e. both are clockwise when
looking down on the table from above, or both are counterclockwise), then elastic will be
positive, cos(D) will be positive, and the angle of departure of the two balls will be <π⁄2.
When the final spin of either the cue ball or the object ball is zero, then elastic will be
zero, and the departure angle will be ≤π⁄2, and the magnitude will depend entirely on

inelastic which is always nonnegative.  These are the only situations that result in

elastic=0.  When the final spins of the two balls are in opposite directions (i.e. one
clockwise and the other counterclockwise), then elastic will be negative, and the
departure angle will depend on the relative magnitudes of the two components elastic

and inelastic.  Note that cos(D) depends on the final spin/speed ratios of the balls, so
within the current set of simplifying approximations, the contribution of elastic to the
departure angle is independent of the overall shot speed.
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Fig. 4.2.  The effects of the sliding frictional forces on the object ball and
cue ball are shown in detail on the after-collision velocity vectors.  Two
coordinate systems are used in the analysis of object ball throw.  The first
is relative to the initial cue ball velocity V0, the second is appropriate to
describe the after-collision velocities.  The vertical z-coordinate is not
shown, but is directed out of the plane of the figure.  The angle  would be
the object ball cut angle if there were no friction.

The above qualitative analysis did not require a detailed examination of the forces
during the collision process.  These forces and the resulting ball trajectories are now
examined in more detail.  For this pupose, it is useful to define two coordinate systems as
shown in Fig. 4.2.  The first coordinate system, denoted (x',y',z'), is appropriate for the
initial cue ball velocity before the collision; the second, denoted (x,y,z) is the natural
coordinate system to describe the trajectories after the collision.  Unit vectors along these
two coordinate axes satisfy the transformation relation

ˆ ′ i 
ˆ ′ j 
ˆ ′ k 

 

 

 
 

 

 

 
 

=
cos( ) sin( ) 0

− sin( ) cos( ) 0

0 0 1

 

 

 
 

 

 
  

ˆ i 
ˆ j 
ˆ k 

 

 

 
 

 

 

 
 

It is convenient to take the origin of the (x,y,z) coordinate system to be the cue ball center
at the moment of contact with the object ball.  With this choice, the contact point of the
cue ball and object ball lies on the x-axis.  In the absense of friction, the object ball would
depart along the x-axis and the cue ball would depart along the y-axis.  The frictional
forces are tangential to the point of contact, and therefore lie in the yz plane.  The
direction of the frictional force is determined by the velocity of the contact point of the
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cue ball at the moment of contact.  The contact point velocity is the sum of the linear
velocity

V0 = V0
ˆ ′ i = V0 cos( )ˆ i + sin( )ˆ j ( )

and the angular velocity

0 × rcp = R 0 × ˆ i =

ˆ i ˆ j ˆ k 

0x 0y 0z

R 0 0

= R 0z
ˆ j − 0y

ˆ k ( )

If the cue ball is struck with a level cue stick (i.e. no masse), then the cue ball rotation
may be written as

0 ′ 0y ′ ˆ j + ′ 0z ′ ˆ k = − ′ 0y sin( )ˆ i + ′ 0y cos( )ˆ j + 0z
ˆ k 

′ 0y <0 for backspin, ′ 0y =0 for a stun shot, and ′ 0y >0 for topspin.  ′ 0z = 0z

corresponds to sidespin.  The resulting contact point velocity is

Vcp = V0 cos( )ˆ i + V0 sin( ) + R 0z( )ˆ j − R ′ 0y cos( )ˆ k 

= Vcpx
ˆ i + Vcpy

ˆ j + Vcpz
ˆ k 

It is the sign of Vcpy that determines the direction of throw of the object ball.  Vcpy >0

results in throwing the object ball in the +ˆ j  direction, Vcpy <0 results in -ˆ j  throw, and

Vcpy =0 results in no throw.  It is interesting that, for a given angle  Vcpy  depends only
on the cue ball sidespin 0z.  Cue ball topspin or draw does not change the direction of
throw, but it does change the magnitude of the throw.

The Vcpx  component of the contact point velocity is directed exactly along the
object ball center of mass.  As the balls collide, the momentum component px=MVcpx  is
transferred entirely from the cue ball to the object ball.  This momentum is transferred

during the very short collision time t according to the equation pbx = Fx( ′ t )d ′ t 
0

t
∫ .  If

there are any tangential components of the contact point velocity, then at any time during
the collision there is a tangential frictional force with magnitude given by
F⊥ t( ) = bbFx t( )  where bb is the ball-ball sliding coefficient of friction.  The direction

of this tangential force is determined by the tangential components of the contact point
velocity.  A unit vector in this tangential direction may be defined as

ˆ e ⊥ =
Vcp⊥

Vcp⊥
=

Vcpy
ˆ j − Vcpz

ˆ k 

Vcpy
ˆ j − Vcpz

ˆ k 

=
V0 sin( ) + R 0z( )ˆ j − R ′ 0y cos( )ˆ k 

V0 sin( ) + R 0z( )2 + R ′ 0y cos( )( )2 
 

 
 

1
2

= cos( )ˆ j + sin( )ˆ k 
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with obvious definitions for the horizontal component cos( ) and vertical component
sin( ).  The vertical component of this force direction sin( ) either works in conjuction or
opposition to the weight of the ball; it does not affect the direction of the cue ball or
object ball velocities in the plane of the table after the collision.  However, the horizontal
component of the force cos( ) does affect the object ball direction.  It is this horizontal
component of the force that results in the object ball throw.  Fig. 4.3 shows the possible
combinations of directions for the unit vector ˆ e ⊥  and the geometrical meaning of the

components cos( ) and sin( ).  The factor cos( ) may be thought of as a geometrical
efficiency factor in converting the frictional forces into throw velocities.

y

z

ê⊥

Topspin
′0y > 0

Draw
′0y < 0

Vcpy < 0Vcpy > 0

ĵ

k̂

Fig. 4.3.  The unit vector ˆ e ⊥ , parallel to the direction of the sliding
frictional force on the object ball, is decomposed into the horizontal and
vertical components characterized by the angle .  This force is applied to
the object ball at the contact point, and an opposing force is applied to the
cue ball.  This force is tangential to the ball surfaces and lies in the yz-
plane.  The direction of the unit vector depends on the cut angle and the
spin axis of the cue ball at the moment of the collision.  The object ball
throw is proportional to the horizontal component of the frictional force.

The object ball throw is determined by the y-component of the frictional force.
Substitution of the above decomposition of ˆ e ⊥  gives the relations

pby = F⊥y ( ′ t )d ′ t 
0

t
∫ = cos( ) bb Fx ( ′ t )d ′ t 

0

t
∫ = cos( ) bbpbx

Vby = cos( ) bbVbx
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The horizontal component of the tangential frictional force results in the throw velocity
Vby being added to the object ball velocity, and the opposing frictional force acts to
subtract exactly this velocity from the post-collision cue ball velocity.  Because the factor
cos( ) depends on several parameters, it is useful to consider some special cases.

Problem 4.2:  How does the throw angle ε defined by tan(ε)=Vby/Vbx, depend on overall

shot speed?
Answer: Rewriting the cos( ) expression in terms of spin/speed ratios gives

cos( ) =
sin( ) + R 0z

V0
( )

sin( ) + R 0z

V0
( )2

+
R ′ 0 y

V0
cos( ) 

 
 
 

2 

 
  

 
 

1
2

The geometrical factor cos( ) is seen to depend entirely on spin/speed ratios, not overall
shot speed.  The throw angle is ε=arctan(Vby/Vbx)=arctan( bbcos( )).  The velocity ratio,

and therefore the throw angle ε is independent of the shot speed.  In practice, this result is

not entirely true; the throw angle decreases slightly for very hard shots.  This change of
throw angle with shot speed is due to a slight speed-dependence of bb.  Fig. 4.4 shows
the dependence of the object ball throw factor cos( ) as a function of the sidespin/speed
ratio (R 0z/V0) for a specific cut angle of π/6 (a half-ball cut) for several values of the
topspin/speed ratio.

Problem 4.3:  For a stun shot, ′ 0y =0, how does the throw velocity depend on the cue

ball cut angle ?
Answer: For a stun shot, the cos( ) factor reduces to the form

cos( ) =
Vcpy

Vcpy
=

V0 sin( ) + R 0z( )
V0 sin( ) + R 0z

= ±1          [for ′ 0y =0]

The sign of the cos( ) factor is determined by the initial velocity component, the cut angle
, and the sidespin 0z.  The throw velocity is then given by

Vby = ± bb Vbx

If the cue ball has no sidespin, then cos( )=+1, and Vby = bbVbx for the shot angle in Fig.
4.2.  This result was assumed in P1.6, as a way to determine bb, but it is now seen with a
careful analysis that this assumption was indeed correct [provided the frozen object ball
acts the same as a stun-shot collision].  The only dependence of the throw velocity on the
cut angle is in the direction of the frictional force.  Fig. 4.4 shows the dependence of the
object ball throw factor cos( ) as a function of the sidespin/speed ratio (R 0z/V0) for a
stun shot.  There is an abrubt change in value as Vcpy changes sign.

Problem 4.4:  For a natural roll cue ball, R ′ 0y =V0 (or a reverse natural roll cue ball,

R ′ 0y =–V0) how does the throw angle depend on the cue ball cut angle ?
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Answer: For a natural roll cue ball, the cos( ) factor reduces to the form

cos( ) =
sin( ) +

R 0z

V0

 
 
  

 
 

sin( ) +
R 0z

V0

 
 
  

 
 

2

+ cos( )2
 

 
 

 

 
 

1
2

          [NR or RNR]

In Fig. 4.4, this factor is plotted as a function of sidespin/speed ratio for a specific cut
angle =π/6.  The throw angle is determined by ε=arctan( bbcos( )).  Although the slope

is steepest in the region near Vcpy=0, the slope is not as steep in this region as that for
smaller values of |R ′ 0y /V0|.

-1.5

-1

-0.5

0

0.5

1

1.5

-4 -3 -2 -1 0 1 2 3 4

Object Ball Throw Factor

R 0z

V0

 
 
  

 
 

R ′ 0y

V0

 
 
  

 
 = 2 [Overspin]

R ′ 0y

V0

 
 
  

 
 = 1 [NR]

R ′ 0y

V0

 
 
  

 
 = 0.05

R ′ 0y

V0

 
 
  

 
 = 0 [Stun]

Fig. 4.4.  The object ball throw factor cos( ) is shown as a function of the
cue ball sidespin to speed ratio (R 0z/V0) for selected values of of cue ball
topspin/draw.  The slope of the given curve determines how sensitive is
the object ball throw to small variations in the sidespin.

In practice, it is impossible to achieve an exact stun shot.  There will always be
some small value of ′ 0y .  Similarly, the quantity Vcpy=(V0sin( )+R 0z) will never be

exactly zero; it may be very small, but it will never be exactly zero.  This leads to the
question of how the throw angle depends on small variations from these limiting
conditions.  The answer is that the direction of the unit vector ˆ e ⊥  becomes very sensitive,

rotating wildly even with very small changes in the cue ball spin.  Both the numerator and
the denominator of the components become small, but without a definite limit.
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Therefore, the cos( ) factor can vary between –1 and +1, and the throw velocity can vary
anywhere between – bbVbx. and + bbVbx.  For small values of ′ 0y , the slope of the

cos( ) curve becomes very steep; this steepness reflects the sensitivity of the object ball
throw to the sidespin.  This correlation of steepness of slope with small ′ 0y  values may

be seen in Fig. 4.4.  This slope reflects the sensitivity of the throw factor cos( ) with
respect to changes in the sidespin.  The sensitivity of the throw factor with respect to
changes in the topspin is related to the derivative of cos( ) with respect to the other
spin/speed ratio (R ′ 0y /V0).

Problem 4.5: What is the sensitivity of the object ball throw with respect to both
components of the cue ball spin?
Answer: It is conventient to characterize the sensitivity in terms of the spin/speed ratios
J0z=(R 0z/V0) and J0y=(R '0y/V0).  The sensitivity of the throw factor to the cue ball spin
is characterized by the derivatives

d cos( )

dJ0y
=

− sin( ) + J0z( )J0y cos2 ( )

sin( ) + J0z( )2 + J0y cos( )( )2 
 

 
 

3
2

d cos( )

dJ0z
=

J0y cos( )( )2

sin( ) + J0z( )2 + J0y cos( )( )2 
 

 
 

3
2

The first equation gives the sensitivity of the throw with respect to changes in the topspin
or backspin of the cue ball, the second equation gives the sensitivity with respect to
changes in the sidespin.  When J0y is small, then the slope of the cos( ) factor is
approximately

d cos( )

dJ0z
≈

J0y cos( )( )2

sin( ) + J0z
3           [for smallJ0y]

This shows why the slope of the cos( ) curve becomes essentially vertical in Fig. 4.4 as
the sidespin J0z passes through the zero point of Vcpy and the denominator of this
component of the sensitivity vanishes.

A combined measure of the sensitivity of the object ball throw to the cue ball spin
may be defined as

 F J0( ) =
d cos( )

dJ0y

 

 
 

 

 
 

2

+
d cos( )

dJ0z

 
 
  

 
 

2

For values of J0 that correspond to small F(J0), the player is allowed larger margins of
error in shot execution (e.g. in the accuracy of the cue tip contact point) and in judgement
(e.g. in estimating, and compensating for, the object ball throw).  Regions with large
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F(J0) are those where very small errors result in large variations in the object ball throw;
these are the regions that the player should try to avoid.  Fig. 4.5 shows a contour plot of
the sensitivity F as a function of the two components of the cue ball spin, J0z and J0y, for
the same cut angle as was used in Fig. 4.4, namely =π/6 (a half-ball cut).  It may be
observed that the regions of least sensitivity are those with small J0y (i.e. close to being a
stun shot), and large sidespin |J0z | (i.e. corresponding to extreme underspin or overspin).
Regions of high sensitivity are seen to correspond to Vcpy=0 (i.e. to J0z=-sin( )=-1⁄2).
The highest sensitivity contours correspond to the region near the point Vcpy=0 and
J0y=0; a magnified view of this region is shown in the inset in Fig. 4.5.  The sensitivity of
the throw angle becomes enormous in this region.

With this sensitivity in mind, it is possibly a wise tactic to avoid these conditions
so as to avoid the large uncertainty in the throw angle.  That is, stun shots with outside
spin should be avoided, according to this argument, when the effects of throw might be
critical to the success of the shot.  This uncertainty may be avoided in practice by
ensuring that the numerator or the denominator (or both) are significantly different from
zero at the moment of collision of the cue ball with the object ball.  This may be done for
a given shot either by avoiding stun-shot spin (i.e. ensuring ′ 0y ≠0 thereby reducing the

magnitude of the cos( ) factor), or by avoiding the Vcpy=0 condition (thereby producing a
predictable, although nonzero throw), or by avoiding both simultaneously.

It should be pointed out that this recommendation is somewhat contrary to that
given by some other players, teachers, and authors.  Their argument is that minimizing
the Vcpy factor will minimize the throw.  As seen in Fig. 4.5, this is only true if | ′ 0y |

differs from zero and is large compared to |Vcpy|.  In practice for some types of shots, it
may be easier to avoid the Vcpy=0 combinations of speed and sidespin by intentionally
overspinning or underspinning the cue ball, and to account explicitly for the throw by
adjusting the aim point.  This approach might be preferable in situations where stun-shot
spin is necessary for position.  Examples of this compensation are described in the
following problems.  Another complicating factor is the seemingly random phenomenon
called skid (also called cling or kick).  Skid occurs when a small piece of chalk or dust is
trapped between the contact point of the balls, increasing dramatically the coefficient of
friction for that particular shot.  When this occurs, the amount of throw associated with
nonzero Vcpy is very unpredictable.
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Object Ball Throw Sensitivity

Fig. 4.5.  A contour plot of the sensitivity of the object ball throw factor
cos( ) is shown as a function of the cue ball sidespin to speed ratios
J0z=(R 0z/V0) and the topspin-draw spin to speed ratio J0y=(R '0y/V0).
Adjacent contours differ by a factor of two in the sensitivity function
F(J0).  The inset figure is an expanded view of the small region near J0y=0
and Vcpy=0.

Problem 4.6:  For a natural roll cue ball (or reverse natural roll cue ball) with no
sidespin, 0z=0, how does the throw angle depend on the cue ball cut angle ?
Answer: From P4.4, the cos( ) factor reduces to the form

cos( ) =
sin( )( )

sin( )2 + cos( )2( )
1
2

= sin( )           [NR or RNR with 0z=0]

The throw angle is determined by ε=arctan( bbcos( ))=arctan( bbsin( )).  The throw
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depends only on the cut angle .  It is 0 for a straight in shot ( =0), and increases to a
maximum value for very thin cuts ( ≈ .  The impact parameter for the cue ball/object

ball collision is bbb=Rsin( ).  This allows the factor cos( )=bbb/R to be easily determined
geometrically for any given cut shot with natural roll and no sidespin.

Based on these considerations, the following procedure may be used to adjust for
object ball throw for natural roll shots with no sidespin.  (1) Determine bb using the
procedure in P1.6.  This only needs to be done once for a given set of balls.  (2) For the
particular shot of interest, estimate the distance D  from the object ball to the pocket; the
corresponding maximum throw distance will be bbD.  (3) For the zero-friction cut angle
for the particular shot of interest, estimate the impact parameter for the ball-ball collision,
and the ratio bbb/R.  (4) Multiply the maximum throw distance bbD by the impact
parameter ratio bbb/R, and call the result s.  (5) Imagine a point that is displaced by the
distance s from the pocket target, and aim for this offset point as if there were no throw.

For an example of this procedure, assume that bb has been determined for the set
of balls as in P1.6 to be 4/72.  For the shot of interest, the distance from the object ball to
the pocket is 36".  The maximum throw distance for this shot is (4/72)*36"=2"; that is,
half the distance results in half the maximum throw.  The shot of interest is almost
straight-in, a slight cut to the left, with bbb/R=1⁄4.  The offset distance is given by
s=1⁄4*2"=1⁄2".  Now a displaced point 1⁄2" to the inside of the pocket center is used as a
corrected aim point.  This aim point is valid for either natural roll or reverse natural roll.
With a little bit of practice, these estimations become second nature and may be done
almost instantaneously.  For other ′ 0y  spin combinations, the offset point will be

displaced from the target pocket somewhere between the maximum value of 2"
(appropriate for a stun shot) and the natural roll value of 1⁄2".

The use of sidespin also requires further adjustments to the above procedure, but
this requires even more judgement on the part of the shooter.  One way to adjust for
sidespin is to estimate mentally the cos( ) factor by imagining how the cue ball will be
spinning at the time of contact.  Replacing the cue ball with a striped ball, and practicing
various combinations of topspin, draw, stun, and sidespin will help the player develop
this estimation skill.  In general, the offset point will always be displaced less than the
maximum value determined by bbD.  Of course, small bb values mean that any errors
made in the estimation of the cos( ) factor result in smaller errors in the object ball
trajectory.  Sticky balls with large bb are very challenging.  One of the challenges faced
by tournament players is the accurate adjustment to different sets of balls, each with
different bb, as they move from table to table in the tournament matches.

Problem 4.7:  What is the resulting object ball spin b due to the frictional force F⊥(t)?
Answer: The angular acceleration is given by the equation r × F = I ˙ .  Integration of the
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force over the contact time gives

b =
−R

I
ˆ i × F⊥ ( ′ t )d ′ t 

0

t
∫ =

−R bb

I
ˆ i × cos( )ˆ j + sin( )ˆ k ( ) Fx ( ′ t )d ′ t 

0

t
∫

=
−5 bbVbx

2 R
−sin( )ˆ j + cos( ) ˆ k ( )

P4.7 gives the resulting object ball spin if the frictional force acts on the ball
without opposition.  During the collision, in order for a horizontal component of angular
acceleration to occur, the ball-ball friction must act simultaneously with the ball-cloth
friction.  It will be assumed hereafter that the ball-cloth friction is insignificant during the
collision time, and its affects will be ignored.  The practical accuracy of this
approximation may be estimated by the following considerations.  A typical collision
time is t=0.0001s, and a typical object ball velocity is Vbx=100in/s.  The average impact
force is then given by Favg=MVbx/t.  The sliding frictional force of the ball on the cloth is
given by Fs= sMg.  The ratio is given by Fs/Favg= sgt/Vbx.  Assuming a ball-cloth
sliding coefficient of friction s=0.1, this ratio is Fs/Favg=0.0000386.  Therefore, the ball-
ball frictional forces do indeed dominate the ball-cloth frictional forces during the
collision.

The treatment of the vertical acceleration due to the vertical component of the
frictional force is somewhat complicated.  The table surface prevents any vertical
acceleration in the downward direction.  The weight of the ball opposes any upward
frictional force, but it doesn’t prevent upward acceleration.  Therefore, during the contact
period, if the ball is on the table surface and (F⊥z–Mg) is negative, resulting in a
downward net force, there is no acceleration at that instant.  But if (F⊥z–Mg) is positive,
then that upward force results in vertical acceleration of the ball off the table surface.  If
Mg is neglible compared to a large positive F⊥z then the maximum vertical velocity
immediately after the collision would be the same as the maximum throw velocity; the
maximum angle that the cue ball departs from the table surface would be the same as the
maximum horizontal throw angle.  With the average impact force given by Favg=MVbx/t
and the downward force of gravity given by Fgrav=Mg, then the ratio is given by
Fgrav/Favg=gt/Vbx.  For the typical shot considered in the previous paragraph, the
numerical value of this ratio is Fgrav/Favg=0.000386.  Therefore, the ball-ball frictional
forces also dominate the gravitational forces during the collision.

Problem 4.8: A cue ball with backspin strikes an object ball straight on.  Assume the
gravitational force on the ball is negligible during the collision, a shot speed of 36"/s, and

bb=4/72 as in P1.6.  What height does the object ball achieve over the table, and how far
away from the starting point does it land?
Answer: The vertical velocity is given by

Vbz = bbsin( ) Vbx
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For a straight on shot with backspin, sin( )=+1 and the entire frictional force is directed
upward.  Vbz =(4/72)36"/s=2"/s.  The height of the ball trajectory above the table is given
by

z = Vbz t - 1⁄2gt2 = (2"/s)t - 1⁄2(386"/s2)t2

The maximum height is achieved when dz/dt=0.  This occurs at tmax =Vbz/g= bbVbx /g.
The time to achieve maximum height is linear in the coefficient of friction bb and in the
shot speed Vbx .

tmax =Vbz/g = 2/386 s = 0.00518 s
The height achieved at this time is

zmax= Vbz tmax - 1⁄2gtmax 2 =  
Vbz

2

2g
 = bb

2 Vbx
2

2g

       = (2/386)" = 0.00518"
The maximum height achieved is proportional to the square of the coefficient of friction
and to the square of the shot speed.  The ball returns to the table at the time (2tmax ).  At
this time, the horizontal distance traveled by the ball while airborne is

x = Vbx (2tmax ) = 
2 bbVbx

2

g

   = 36"(2)(2/386) = 0.373"
The horizontal distance of the jump is proportional to the coefficient of friction and to the
square of the shot speed.  Due to the very short times and small distances that the object
ball is airborne, this jumping effect can be neglected, for the most part, during play.

One point to notice in P4.8 is that while the object ball has a vertical momentum
immediately after the collision, the cue ball is constrained to the table surface.  If the cue
ball strikes the object ball with topspin, then it is the cue ball that leaves the table and the
object ball that is constrained to the table surface.  In either case, the vertical component
of the linear momentum is not conserved by the balls during the collision.  The reaction
of the downward-directed ball is absorbed by the table.  If the table had been considered
to be part of the system, then linear momentum would have been conserved in the
analysis.  In this respect, the nonconservation of linear momentum in the vertical
direction is an artifact of the formal separation between the “system” and the
“surroundings” in this analysis.

Problem 4.9:  Using the velocity and spin results from P4.2-P4.7, compute the total
kinetic energy before and after the collision.  Determine Einelastic.  (For simplicity, ignore
the velocity and spin resulting from the vertical components of the frictional force.)
Answer:  The total kinetic energy immediately before the collision is

T0 = T0(Trans) + T0(Rot)  = 1
2 MV0

2 + 1
2 I 0

2

The kinetic energy immediately after the collision is
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T f = 1
2 M Vc

2 + Vb
2( ) + 1

2 I c
2 + b

2( )
Writing all of the friction-dependent contributions in terms of Vby gives

Vby = bb cos( )Vbx = bb cos( )V0 cos( )
Vb = V0 cos( )ˆ i + Vby

ˆ j 

Vc = V0 sin( ) − Vby( )ˆ j 
b =

−5Vby

2R
ˆ k 

c = 0 + b = − ′ 0y sin( )ˆ i + ′ 0y cos( )ˆ j + 0z −
5Vby

2R

 
 
  

 
ˆ k 

Substitution into the kinetic energy expression gives

T f = T0 + M −Vby V0 sin( ) + R 0z( ) + 7
2 Vby

2( )
= T0 + M −VbyVcpy + 7

2 Vby
2( )

The kinetic energy change Einelastic.is given by

Einelastic = T0 − T f = M Vby V0 sin( ) + R 0z( ) − 7
2 Vby

2( )
= M VbyVcpy − 7

2 Vby
2( )

The friction allows for transfer of energy between the translational and rotational degrees
of freedom, but only at a cost.  This is consistent with the effect of ball-cloth friction on
the kinetic energy.  In the expressions above, Vcpy is the horizontal tangential component
of the contact point velocity of the cue ball at the instant of collision.  Vcpy determines the
direction of the frictional force on the object ball and therefore has the same sign as Vby.
The lowest order term in bb in the loss of energy due to friction, MVbyVcpy, is positive.
The second term, which is second order in bb and therefore in general much smaller in
magnitude, is always negative.

Problem 4.10:  Determine elastic , inelastic, and total in terms of Vby.  What are these
quantities when Vcpy =0?
Answer: From P4.9, inelastic is given by

∆inelastic = 2
M Einelastic = 2VbyVcpy − 7Vby

2

Generalizing the approach of P4.1 for arbitrary cue ball spin 0,

∆elastic = 2
5 R2

c
2 + b

2 − 0
2( ) = 2

5 R2
c
2 + b

2 − −( )⋅ −( )( )
= 4

5 R2 ⋅

=−2R 0zVby + 5Vby
2

∆total = ∆elastic + ∆inelastic = 2VbyV0 sin( ) − 2Vby
2
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In general total is a quadratic function of the ball-ball sliding coefficient of friction bb.
In the special case of Vcpy =0, then also Vby=0 and total  vanishes, indicating that the
departure angle of the cue ball and object ball is exactly a right angle.

The initial velocity of the cue ball immediately after collision is given by

Vc = V0 sin( ) − Vby( )ˆ j .  The magnitude of this velocity depends on the object ball

throw, but its direction is independent of any frictional forces.  If the cue ball has no spin
about the horizontal axis (i.e. only sidespin, no backspin or topspin), then this initial
direction is unchanged by the sliding friction of the cloth.  The cue ball will slow down
upon achieving natural roll, but the velocity direction will remain unchanged.  In this
sense, the trajectory of the cue ball after the collision is less dependent on the ball-ball
coefficient of friction bb  than the object ball trajectory.  This observation is useful in
judging and executing accurate stun shot caroms.

Exercise 4.1: Experiment with stun shot caroms.  Begin by placing the cue ball a few
inches away from the object ball, and cueing exactly in the center.  The cue ball should
not curve after the collision.  Mark the position of the cue ball center at the collision point
and the two contact points where the balls touch the cushions.  Measure the angle and
determine how close is the departure angle to a right angle.  Include shots with sidespin to
determine the effects of total on the departure angle.  With some practice, stun shot
caroms can be executed very accurately.  Stun shot caroms are particularly useful in
9-ball.

Problem 4.11:  Determine the total angular momentum immediately before and after the
collision relative to the point that corresponds to the cue ball center at the moment of
collision.  Is angular momentum conserved?  (ignore the linear velocity components due
to the vertical frictional forces)
Answer:  There are two contributions to the total angular momentum.  One is the

rotational contributions of the balls spinning about their centers, Lspin = I , and the
other is the orbital contribution of the centers of mass moving about the point of origin,

Lorbit = r × p .  Before the collision, these contributions are

L0
orbit = r0 (t) × p0(t) = V0t( ) × MV0( ) = 0

L0
spin = I 0

L0 = L0
orbit + L0

spin = I 0

After the collision the contributions are
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Lb
orbit = rb (t) × pb(t) = 2Rˆ i + Vbt( ) × MVb( )

= 2MR ˆ i × Vb( ) = 2MR ˆ i × Vbx
ˆ i + Vby

ˆ j ( )( ) = 2MRVby
ˆ k 

= −2I bz
ˆ k 

Lb
spin = I b

Lc
orbit = rc (t) × pc (t) = Vbt( ) × MVb( ) = 0

Lc
spin = I c = I 0 + b( )

L = Lc
orbit + Lc

spin + Lb
orbit + Lb

spin = I 0 +2I by
ˆ j 

The total angular momentum difference before and after the collision is then

L − L0 = 2I by
ˆ j 

The total angular momentum is always conserved except for the horizontal component
about the y-axis, which is conserved only when by=0.  This component arises from the
vertical frictional force during the collision, and vanishes only when ′ 0y =0 (i.e. for stun

shot collisions).  The vertical component of angular momentum is always conserved, as is
the other horizontal component about the x-axis; the orbital angular momentum arising
from the object ball throw compensates exactly for the change in the spin angular
momentum.  This compensation cannot occur for the vertical frictional force because of
the constraint of the table surface.  In the above equations, the vertical linear acceleration
was neglected, but even if it had been included for the jumped ball (as determined in
P4.8), the corresponding contribution from the nonjumped ball during the collision is
eliminated by the table surface.  Indeed, as discussed previously, because the vertical
components of linear momentum are not conserved in the collision, it should not be
expected that the angular momentum components due to these same frictional forces
could be conserved.

In the previous few problems, various aspects of object ball throw have been
examined.  The object ball throw affects the trajectories of the balls immediately after the
collision.  The behavior of the balls after the collision is determined by both the initial
post-collision conditions of the balls and by the action of the cloth friction on the sliding
balls which was discussed in some detail in the previous sections.  The results of the
present section heretofore, involving ball-ball interaction will now be combined with the
results of the previous sections to examine the behavior of the sliding balls as a function
of the collision conditions, and eventually, as a function of the tip-ball contact point.  In
the following discussions, object ball throw will be largely ignored in order to simplify
the derivations.  In most cases, the effects of object ball throw may be included, at the
cost of some additional complexity, but this adds relatively little to the basic
understanding of the situations.  The first situation to be considered is the behavior of a
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natural roll cue ball after collision with an object ball.  This special case is particularly
central to pool and billiards because of the special importance of natural roll.

Problem 4.12: What is the angle of deflection of a natural roll cue ball as a function of
the object ball cut angle after the collision and after natural roll is achieved by both balls?
(ignore friction between the balls)
Answer:  With no ball-ball friction, the initial deflection angle is 90 degrees.  In terms of

unit vectors ˆ ′ i  and ˆ ′ j  in the x' and y' coordinate directions respectively in Fig. 4.2, the

initial velocity vectors immediately after collision are given by

Vb = V0 cos( ) cos( )ˆ ′ i − sin( )ˆ ′ j ( )
Vc = V0 sin( ) sin( )ˆ ′ i + cos( )ˆ ′ j ( )   .

The cut angle  is the angle between vectors Vb and V0.  There is no initial object ball
angular velocity immediately after the collision, so only the speed changes and not the
direction upon achieving natural roll.  The final natural roll velocity is given by

Vb ,NR = 5
7 Vb = 5

7V0 cos( ) cos( )ˆ ′ i + sin( )ˆ ′ j ( )  .

The situation is somewhat different for the cue ball.  The cue ball has natural roll before
the collision, V0= R ′ 0y , and this angular velocity is unchanged by the collision with the

object ball.  The ball-cloth friction from this initial angular velocity creates a force

component in the ˆ ′ i  direction only.  The final velocity vector for the cue ball is

Vc,NR = 5
7 Vc + 2

7 V0
ˆ ′ i = 5

7 V0 sin2 ( ) + 2
7 V0( )ˆ ′ i + 5

7 V0 sin( )cos( )( )ˆ ′ j .

The cue ball deflection angle , relative to the velocity vector V0, after natural roll is
achieved, is determined by

tan( ) =
sin( )cos( )

sin2( ) + 2
5

Immediately after the collision, the cue ball path is a parabola as determined in P2.3.  The
frictional force accelerates the cue ball until natural roll is achieved.  At the point that
natural roll is achieved, the cue ball rolls in a straight line with no acceleration.  The
angle between this straight line and the initial velocity direction V0 is the deflection angle

 which satisfies the above equation.

Problem 4.13: Show that tan( + ) = 7
2 tan( )

Answer: Using the tangent addition relation tan( + ) =
tan( ) + tan( )

1 − tan( )tan( )
 with

tan( ) =
sin( )

cos( )
 and tan( ) =

sin( )cos( )

sin2( ) + 2
5

 gives

tan( + ) =
sin( ) sin2( ) + cos2( ) + 2

5( )
2
5 cos( )

= 7
2 tan( )
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Problem 4.14: What cut angle  maximizes the natural roll deflection angle ?

Answer: Rewrite the above expression as = arctan 7
2 tan( )( ) − .  Differentiate with

respect to  to obtain
d

d
=

14

4 + 45sin2( )
−1.

Setting the derivative to zero and solving for gives

( max) = arcsin
2

3

 
 
 

 
 
 = 0.49088 =

6.3999
[= 28.125 deg]

Note that this is just a bit thicker than a half-ball hit, which is a π⁄6 or a 30 degree cut
angle (neglecting collision induced throw).

Problem 4.15: What is the maximum deflection angle  for a natural-roll cue ball
collision?
Answer: Substitution of ( max )  gives

max = arctan 7
2 tan ( max)( )( ) − ( max)

=
2

− 2 ( max ) = 0.58903 =
5.3335

[= 33.749 deg]

This is very useful to know because a natural-roll cue ball carom at this angle is
intrinsically more accurate than a cut shot with the same cut angle as demonstrated in the
following problem.

Problem 4.16:  If the object ball is cut about 2 degrees away from the maximum
deflection angle as determined in P4.13, what is the change in the cue ball deflection
angle?
Answer: If the angle is 2 degrees less, then

= arctan 7
2 tan(26deg)( ) − 26deg = 33.64deg

which is 0.11 degrees away from the maximal value.  If the angle is 2 degrees more,
corresponding to a half-ball hit of 30 degrees, then

= arctan 7
2 tan(30deg)( ) − 30deg = 33.67deg

which is 0.08 degrees away from the maximal value.  In both cases, the cue ball
deflection angle is much more stable to small deviations than the object ball cut angle.

Problem 4.17: What is the relation between the cut angle  and the natural roll deflection
angle  for small cut angles ?
Answer: For small angles (measured in radians), tan(x) ≈ x .  The relation,

tan( + ) = 7
2 tan( ), from P4.13 then gives
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≈ 5
2           [for small ].

This relation is useful to know when playing position using natural roll on nearly straight-
in shots.  It is difficult to achieve a larger amount of topspin than V0=R  with a direct
cue-tip/cue-ball shot due to the risk of miscue (see P1.7).  However, higher spin/speed
ratios can be achieved with carom shots.  A higher spin/speed ratio would result in a
smaller factor than that in the above equation.

Problem 4.18: What is the cut angle  at which exactly half of the kinetic energy of a
natural-roll cue ball is transferred to the object ball?  What is the corresponding natural
roll deflection angle ?  At this angle, what are the final kinetic energies of both balls?
Answer: When the cue ball has natural roll, V0=R 0, the total kinetic energy is

T = 1
2 MV0

2 + 1
2 I 0

2 = 7
10 MV0

2

The energy of the object ball immediately after collision is

Tb = 1
2 MVb

2 = 1
2 MV0

2 cos2( )

Setting Tb=1⁄2T and simplifying gives

( 1
2
T) = arccos 7

10( ) = 0.57964 =
5.4199

[= 33.211 deg]

This angle is unchanged as the object ball achieves natural roll.  The corresponding
deflection angle after natural roll of the cue ball is achieved is

(1
2
T ) = arctan 7

2 tan( (1
2
T ))

 
 

 
 − (1

2
T ) = 2 ( 1

2
T ) − (1

2
T ) = (1

2
T )

The relation 7 2tan( ( 1
2
T )) = tan 2 ( 1

2
T )

 
 

 
 , used to simplify the above expression, may be

verified using the tangent addition formula in P4.13.  Therefore, when the final deflection
angles are equal for both balls, then each ball has the same kinetic energy immediately
after the collision.  Note that the cut angle at which this occurs is just a bit thinner than
that for a half-ball hit (which would be 30 degrees, neglecting collision induced throw).

The final object ball and cue ball kinetic energies, using Vb,NR and Vc,NR from
P4.12 are

Tb, NR = 1
2 MVb,NR

2 = T0
25
49 cos2 ( )( )

Tc,NR = 1
2 MVc, NR

2 = T0
25
49 sin4( ) + 20

49 sin2( ) + 4
49 + 25

49 sin4( )cos2( )( )
where T0 is the initial cue ball translational energy.  These relations are satisfied for any
cut angle .  Substitution of cos2( ( 1

2
T) )=7/10 and sin2( ( 1

2
T) )=3/10 for the specific half-

energy cut angle results in

Tb, NR = Tc, NR = 5
14 T0  .

Not only is the energy divided equally between the two balls upon collision with a cut
angle of ( 1

2
T) , but the final energies of the two balls are equal after both balls achieve
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natural roll.  The distance that a ball rolls after achieving natural roll, neglecting
subsequent cushion and ball collisions, is directly proportional to the natural roll kinetic
energy.  This relation is useful in situations in which it is necessary that both the object
ball and the cue ball roll the same distance, and as a point of reference when unequal
distances are required.

In Fig. 4.6 the deflection angle of a natural roll cue ball, as determined in P4.12
and P4.13, is plotted as a function of the object ball cut angle .  Also shown on the same

graph is the derivative curve 
d NR
d( )  as determined in P4.13.  The points on this curve

corresponding to a half-ball hit, the maximum deflection angle ( NR:max )  from P4.13,

and the deflection angle corresponding to splitting the kinetic energy as determined in
P4.18, are also plotted.  The derivative curve is monotonic in the range shown in Fig. 4.6
(in general, it is an even function, symmetric about ).  The derivative curve starts with
a value of 5⁄2 at =0 (see P4.14), decreases to the value of zero at ( max) , and then

approaches its asymptotic value of -5⁄7 as the cut angle approaches π/2.  Another point of

interest shown in Fig. 4.6 is the value of the cut angle  at which the slope 
d NR
d( )  has a

value of one.  This occurs at arcsin 1
15( )=.26116 [=14.963 deg].  For cut angles

less than , 
d NR
d >1 and the natural roll cue ball trajectory is more sensitive than the

object ball trajectory to small variations in the cut angle.  However for the rest of the

range of cut angles, 
d NR
d <1 and the cue ball trajectory is less sensitive than the object

ball trajectory.  Less sensitivity means that it is easier for the shooter to control, and this
may be used to advantage, for example, in placing the cue ball more precisely in position
and safety play.
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,
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d

 
 

 
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1
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 
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1
2
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 
 

 
 = 0.99116,0.99116( )

=

Fig. 4.6. The post-collision natural roll cue ball deflection angle is shown
as a function of the object ball cut angle.  The NR curve is applicable
when the cue ball has natural roll immediately before the collision.  Stun
is when the cue ball has no spin before the collision. RNR is when the cue
ball has reverse natural roll before the collision.  The straight line 
corresponds to an equal splitting of the kinetic energy after both balls

achieve natural roll.  Also shown is the dashed curve defined by 
d NR
d( ) .

Several important individual points on each of these curves are also shown
as discussed in the text.
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Problem 4.19: If the cue ball is not rotating upon impact with the object ball (a stun
shot), at what cut angle is half of the kinetic energy transferred?  What are the final
energies of the balls? (neglect any frictional forces between the balls)
Answer: Taking the velocities immediately after the collision from P4.12, the initial
kinetic energies are

Tb = 1
2 MVb

2 = 1
2 MV0

2 cos2( )

Tc = 1
2 MVc

2 = 1
2 MV0

2 sin2( )

Equating these two energies gives

tan2( ) =1

= arctan(1) =
4

[= 45 deg]

Each ball has initially after the collision an energy of 1⁄2T0.  Since neither ball has any
angular velocity immediately after the collision, both balls slow down upon achieving
natural roll by 5⁄7 of the initial ball velocities.  There is no change of angle, since the
velocity directions of the balls do not change.  The natural roll kinetic energy of each ball
is then (1⁄2)(5⁄7)2T0=(25⁄98)T0.  Compared to the results of P4.18 involving natural roll of
the cue ball, it is seen that the cut angle is thinner and that the final energies of both balls
are smaller relative to T0 with a stun shot than with natural roll.  This half-energy cut
angle point for stun shots is shown on the Stun curve in Fig. 4.6.  The Stun curve is a
straight line that ranges from the limiting values of Stun =π/2, at cut angle =0, to Stun

=0, at =π/2.

Problem 4.20: What is the natural roll cue ball deflection angle as a function of the cue
ball spin 0y at the moment of collision and the object ball cut angle?
Answer: Generalizing the results of P4.12, it is convenient to write the natural roll cue
ball velocity in terms of the spin/speed ratio J0y.=(R 0y/V0).

Vc,NR = 5
7 Vc + 2

7 V0J0y
ˆ ′ i = 5

7 V0 sin2 ( ) + 2
5 J0y( )ˆ ′ i + 5

7 V0 sin( )cos( )( )ˆ ′ j 

The cue ball deflection angle is determined by the ratio of the two components.

tan( ) =
sin( )cos( )

sin2( ) + 2
5 J0y

Using the tangent addition relation, this may be written as

tan( + ) =
1 + 2

5 J0y
2
5 J0y

 

 
 

 

 
 tan( )

For the natural roll condition, J0y=+1, these results all agree with those of P4.12-P4.13.

Problem 4.21: In P4.18 and P4.19 it is seen that a particular cut angle splits evenly both
the initial kinetic energy and the natural roll kinetic energies of the two balls.  Under what
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conditions will a cut angle split both energies? (assume z=0)
Answer: Half of the initial kinetic energy is transferred when Tb=1⁄2T0.  This occurs when

cos2 ( ) = 1
2 + 1

5 J0y
2( )

where J0y is the spin/speed ratio (R 0y/V0).  The natural roll kinetic energy is split evenly
when Tb,NR=Tc,NR.  Using the previous natural roll conditions, this occurs when

cos2 ( NR ) = 1
2 + 1

5 J0y( )
The angles  and NR are equal only when

J0y (J0y  – 1) = 0
There are only two possible solutions to this equation: J0y =1, the natural roll situation
discussed in P4.18, and J0y =0, the stun shot condition discussed in P4.19.  For other
spin/speed ratios, there will be one angle  that splits the initial kinetic energy, and a
separate angle NR that splits evenly the natural roll kinetic energies.

Problem 4.22: If the cue ball has reverse natural roll (RNR), V0=- R ′ 0y , what is the

relation between the cut angle  and the natural roll deflection angle ?
Answer: For reverse natural roll, J0y =-1.  Referring to the result in P4.20,

tan( + ) = − 3
2 tan( )

The sign factor in this equation indicates that ( + ) is in a different quadrant than .
Specifically, 0≤ ≤π⁄2 is always in the first quadrant, and π⁄2≤( + ≤π is always in the
second quadrant.  Taking the appropriate quadrant for  gives the relation

= arctan − 3
2 tan( )( ) − +   .

For small cut angle , it is seen that

≈ − 5
2             [for small ]

The same factor of 5⁄2 is seen for the RNR draw shot as for the (topspin) natural roll shot
in P4.14.  However, in the case of a draw shot the deviation is away from the reverse
direction π (or 180 degrees), rather than the forward direction.  As in the case with
topspin, it is difficult to achieve a larger amount of draw than V0=–R 0 with a normal
direct cue-tip/cue-ball shot due to the risk of miscue (see P1.7).  However, higher
spin/speed ratios can be achieved with carom and masse shots.

Problem 4.23:  In P4.18 and P4.19 it is seen that the kinetic energy of the cue ball and
object ball is split evenly when the cut angle is equal to the cue ball deflection angle for
J0y=1 and J0y=0.  Show that this condition is true for arbitrary J0y.  What is the cut angle
that splits the natural roll energy of a reverse natural roll collision?  How does this angle
compare to the natural roll angle from P4.18.
Answer:  From P4.21, the post-collision natural roll kinetic energy is split evenly when

cos2 ( ) = 1
2 + 1

5 J0y( )  and sin2 ( ) = 1
2 − 1

5 J0y( ) .  Substitution of these relations  into the

general deflection angle equation of P4.20 gives
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tan( ) =
sin( )cos( )

sin2( ) + 2
5 J0y

=
sin( )cos( )

cos2( )

= tan( )

or in general  =  when the natural roll kinetic energy is split evenly.  This line is shown
in Fig. 4.6.  The above equation for the cut angle may be written as

= = arcsin 1
2 − 1

5 J0y( )
In particular, for reverse natural roll, J0y=-1, the half-energy cut angle is given by

1
2
T, RNR = arcsin 7

10( ) = 0.99116 =
3.1696

[= 56.789deg]

From comparison with P4.18, it is seen that 1
2
T, RNR + 1

2
T, NR = .  This is an example

of the general relation
1
2
T, J0y

+ 1
2
T,− J0y

=

which follows from the identity cos2 ( 1
2
T, J0 y

) = sin2( 1
2
T ,−J0 y

)

The reverse natural roll deflection angle is shown as a function of the object ball
cut angle in Fig. 4.6.  Considering RNR as a function of cut angle , it is seen that RNR

ranges from zero, for very thin cuts, to π, for very thick cuts.  In contrast NR from P4.14
only ranged from zero to a bit over π/6.  Since natural roll topspin and reverse natural roll
backspin represent the practical extremes of cue ball spin (neglecting collision effects and
masse), the area between the NR and RNR  curves in Fig. 4.6 respresents all possible
practically allowed shots.  The area between the Stun curve and the RNR curve
represents all possible draw shots, and the area between the Stun and NR curves
represents all possible topspin shots.  Inspection shows that the area associated with draw
shots is much larger than that associated with topspin shots.  This means that there is
much more flexibility with respect to carom angles with draw than with topspin, or
equivalently, that topspin shots are generally less sensitive than draw shots to variations
in the cut angle or amount of spin.  It may be seen in Fig. 4.6 that RNR is almost a
straight line, with an average slope of about twice that of Stun.  Since Stun is relatively
easy to determine, this allows in turn RNR  to be estimated for any cut angle simply by
multiplying Stun by 2.  Inspection of Fig. 4.6 shows that this simple factor will always
overestimate the actual deflection angle.  The following problem demonstrates the
magnitude of error of this approximation.

Problem 4.24:  At what cut angle does a reverse natural roll cue ball deflect at exactly a
right angle?
Answer:  From P4.22, the desired cut angle satisfies the relation

tan( ⊥ + 2 ) = − 3
2 tan( ⊥ )
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Using the identity tan( ⊥ + 2 ) = −1 tan( ⊥ ) , ⊥ may be determined to be

⊥ = arctan 2
3( ) = 0.68472 =

4.5881
[= 39.232deg]

This point is plotted on the RNR  curve in Fig. 4.6.  The simple “factor of 2” estimate
from the stun-shot curve would have predicted this angle to be π/4 (or 45 degrees), which
would have been about 12% in error.  The correct cut angle ⊥ is about midway between
a half-ball cut angle and the π/4 angle.

Problem 4.25: For a given cut angle , what sidespin/speed ratio will result in no
horizontal tangential frictional forces?
Answer: The surfaces of the balls must not slide against each other in order for the
frictional forces to vanish during the collision.  The velocity of the cue ball contact point
just before the collision is the sum of the linear velocity V0 and the instantaneous velocity
due to the angular velocity about the vertical axis × r .  The contact point velocity is
given by

Vcp = V0 cos( )ˆ i + V0 sin( ) + R 0z( )ˆ j − R ′ 0y cos( )ˆ k 

= Vcpx
ˆ i + Vcpy

ˆ j + Vcpz
ˆ k 

When Vcpy=0, then the horizontal frictional forces vanish.  Solving for the ratio R /V0

gives

J0z =
R 0z

V0
= − sin( )

Problem 4.26: Using the initial spin/speed ratio and the final natural roll spin/speed ratio
from P3.6, and the Vcpy=0 relation from P4.25, what cue tip contact points will result in
no horizontal tangential frictional forces between the two colliding balls with a cut angle

?
Answer: For the spin/speed ratio immediately after cue tip contact, the contact points are
given by the vertical line satisfying

sin( ) =
5 ′ y tip
2R

Note that the object ball contact point satisfies the relation, y'cp=–Rsin( ).  This gives the
relation between y'tip and y'cp as

′ y tip = − 2
5 ′ y cp

The sign difference means that the cue tip impact parameter is in the opposite hemisphere
from the object ball contact point.  Note that in the limit of an extreme cut shot of angle
π/2, this result agrees with that of P3.5; that is, “sideways natural roll” is achieved with a
horizontal impact parameter of 2/5R.  This relation is useful when the object ball collision
occurs very soon after the cue tip contact, before the friction between the ball and cloth
has time to change the velocity.
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When the cue ball is allowed to achieve natural roll before colliding with the
object ball, the desired cue tip contacts points satisfy

sin( ) =
7

2

′ y tip
ztip

 

 
 

 

 
 

′ y tip = −
2 ′ y cp

7R

 
 
  

 
ztip

For a given cut angle , this is a straight line that passes through the origin (0,0).  An easy
way to estimate the sets of points defined by this straight line is as follows.  Refer to Fig.
4.7.  Determine the correct contact point at height ztip=7⁄5R.  At this contact point, natural
roll would be achieved immediately (see P3.5), and the natural roll horizontal offset is the
same as the initial horizontal offset determined above, namely the contact point would be
(y,'z)=(-2⁄5y'cp,7⁄5R).  The set of desired points is then given by drawing a straight line
between this particular contact point and the point at the very bottom of the ball (0,0).  In
particular, the point on this straight line that is the minimum distance from the center is
on the small circle as shown in P3.7.

Set of desired
contact points

(-2/5ycp,7/5R)
Point of minimal

displacement from
center

“Small Circle” of
aim points

y

z

(0,0)

ycpObject ball contact
point on rear of

ball

Fig. 4.7. The set of cue tip contacts points that correspond to no
(horizontal) frictional forces when the cue ball achieves natural roll prior
to collision with the object ball fall on a straight line.  The object ball
contact point depends on the cut angle.  The slope of the line depends on
the object ball contact point y'cp as indicated.
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