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I ntroduction

The word amateur is based on the Latin words amator (alover) and amare (to
love). Anamateur is someone who loves what he does, and pursuesit for the pleasure of
the act itself. These notes are intended for the pool player who enjoys playing the game,
and who enjoys understanding how things work using the language of physics. Thereis
probably very little pool playing technique discussed in this manuscript that will be new
to the experienced pool player, and likewise, thereislittle physics that will be new to the
experienced physicist. However, there will be hopefully new pool technique for the
interested physicist and new physics for the interested pool player. The tone of the
presentation is not directed necessarily toward either the pool student or the physics
student, but rather toward the amateur who enjoys both. The physicsthat is used hereis
not derived from first principles; it is assumed that the reader is familiar with such ideas
as Newton’slaws of motion, center of mass transformations, moments of inertia, linear
and angular acceleration, geometry, trigonometry, and vector notation. Referenceto a
calculus-based introductory college level physics textbook should be sufficient to
understand fully anything used or mentioned in thistext. The Feynman Lectures on
Physics (Val. 1) isone such text that the reader will find enjoyable.

Thisdiscussion is divided into four sections. Section 1 discusses the equipment
(balls, tables, cue sticks, cuetip, cloth) and some of its associated properties (various
friction coefficients, forces, moments of inertia). Section 2 discusses the concept of
natural roll. Section 3 discusses the cue tip and cue ball impact. Section 4 discusses
collisions between balls. Each section includes some general discussion and specific
problems (along with their solutions). Some exercises are also given along the way; it is
intended for the reader to experiment on a pool table with some of the techniques that
have been discussed.
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1. Properties of the Equipment

Pool, billiard, and snooker balls are uniform spheres of, usually, a phenolic resin
type of plastic. Older balls have been made of clay, ivory, wood, and other materials. On
coin-operated tables, the cue ball is sometimes larger and heavier than the other balls;
otherwise, all the ballsin a set are the same size and weight. Standard pool balls are
2%, in diameter, snooker balls are either of two sizes, 25" or 24", and carom
billiard balls are one of three sizes, 22%,", 234", or 2 /45". Tolerancesin all cases are
+0.005". Pool ballsweigh 5.5 to 60z, snooker ballsweigh 5 to 5.50z, and billiard balls
weigh 7 to 7.50z.

Problem 1.1: What is the volume of a pool ball in terms of its radius R?

Answer: In spherical coordinates, the volume of a sphereis given by
2nnt R

v= OO0 2sinedrdedy =(3R%)(2)(2x) = § 2R
000
where Ris the radius of the ball. The volume of a standard pool ball is between
4 7(1.120in)° = 5.885in> and 4 (1.130in)° = 6.044 in>.

Problem 1.2: In order to satisfy the size and weight limits, what is the density range of
the ball material in units of 0z/in3?

Answer: The density is the mass divided by the volume, p=M/V. For a standard pool ball
the density is between 5.502/6.044 in3=0.9100z/in3 and 602/5.885 in3=1.0200z/in3. For
comparison, the density of water is 0.5780z/in3.

The inertiatensor of arigid body is defined as the el ements of the 3 by 3 matrix
()gﬁ A rf ljld

i = Qe )&ia rk - rir;udv

i = Q 3 ij ’ i ]g

where the components of the vector r=(x,y,z) are the cartesian coordinates. For a uniform
sphere, p (r)=p isaconstant and is the density of the ball material. The mass of the ball is

M= pV:-gang.

Problem 1.3: Determine the inertiatensor for aball intermsof M and R.
Answer: Taking the moment of inertia about the x-axis gives

Y 2,2
o= PO+ ¥ v = Sz 45, = 25,
It isinteresting to notice that the moment of inertia about the x-axis, for example as given

above, depends only on how the mass of the object is distributed along the z- and y-axes.
Some thoughtful reflection will reveal that, for the coordinate axes origin taken to be the

Pool Physics 2 Draft: 29-Feb-96




center of the sphere, the 2 integral Sz is the same as the y2 integral Sy, so only one
integral really needs to be done asindicated in the last equality above. In fact,
Sx=Syy=Sz since for asphere, the choice of axisis completely arbitrary. Using
z=rcog(0), x =rsin(8)cos(p), and y=rsin(8)sin(¢p) alows these to be written in
polar coordinates. Taking S, for example gives

R T 2n
Sz = pd4dr GOS2 0sinodo qu) = p(—% RS)(%)(ZJ'E) = _% MR2
0 0 0

The moment of inertiaabout any axisistwicethisvaue, giving Iy =1y =15, = ?23 MR

It may also be seen that the off-diagonal elements of the inertiatensor are all zero. This
means that any choice of orthogonal coordinate axes isformally equivalent to any other,
and any such choice corresponds to the principle axes. For other rigid bodies, the off-
diagonal elements are generally nonzero, and only a special choice of the coordinate axes
will result in adiagonal inertiatensor. Written as amatrix, the inertiatensor is

ada 0 00
| = w go 1 0z
S & 0 1o
An important property of thisinertiatensor is that its product with any vector m issimply
ascaling of that vector, the direction does not change: lm = (% MRZ)m :

The kinetic energy of aball consists of two parts, trandlational and rotational. The
translational kinetic energy is given by T(trang=1/2MV2, where V is the velocity of the
center of mass of the ball. The mass of the ball, M, is the proportionality constant
between the velocity squared and the energy. The rotational kinetic energy about a
principle axisis given by the similar equation T(rot)=1/2lu12, wheretn is the angular
velocity, for examplein radians per second. Therefore the moment of inertia, |, isthe
proportionality constant between the angular velocity squared and the rotational kinetic
energy. The most general equation for the rotational energy of arigid body is
T(Rot)zllzmxm, in which m is the angular velocity about each axis, | isthe 3 by 3 inertia
tensor, and the dot implies the appropriate matrix-vector or vector-vector product. The
guantity L=l isthe rotational angular momentum about the center of mass, and the
simple form for | given above means that for a pool ball the angular momentum is aways
aligned with the angular rotation. The rotational energy may then be written as

T(Rot) = (?13 MRz)m X0 = (% MRZ)Imlz. The freedom of axes choice for a uniform sphere

will often allow the problem at hand to be simplified to only asingle rotation axis, in
which case the simple scalar equation may be used

When aforceisapplied to arigid body, such asaball, the velocity of the center of
mass changes according to the equation F = MV, and the angular velocity changes
according to the equation r © F =1 m. When asingle principle rotational axisis
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considered, the latter equation reduces to the ssimpler rsin(0)|F| = | w, wherefl isthe
angle between the vectorsr and F, with magnitudes r and |F| respectively. m isin the
direction perpendicular to the plane defined by the two vectorsr and F, and aligned, by
convention, with the right-hand-rule (i.e. when the fingers of the right hand curl in the
direction that rotates r into F, then the thumb points along the direction of positivem.
Other analytic expressions for the vector cross product will also be used in this
discussion, but the right-hand-rule provides a useful and intuitive defintion.) The vector r
points from the center of mass of the ball to the point on the surface of the ball at which
theforceis applied. In these equations, Vo %Vt— isthe linear acceleration along each

coordinate axis and w ° %‘tﬂ isthe angular acceleration around each coordinate axis. The

similarities in the relations between the force and the mass M for the linear acceleration
and between the force and the moment of inertial for the rotational acceleration are again
seen. Thersin(B) factor shows how the angular accel eration depends on the direction of
the force. When the forceis applied directly toward the center of mass of the ball, then
the sin(8) factor is zero and there is no angular acceleration; it isonly when the forceis
applied in adirection askew from the center of the ball that angular acceleration occurs.

A forceisrequired to rub two objects together. If the two objects are pressed
together with anormal force Fy, and a sideways force of magnitude Fr causes the two
objects to slip against each other without acceleration, then the coefficient of sliding
friction is defined as (giding)=F/FN. To agood approximation, the coefficient of
friction between two surfaces is a constant, independent of the forces and independent of
the speeds of the two dliding objects. A small coefficient of friction is associated with
slippery object pairs, and alarge coefficient of friction is associated with sticky object
pairs. Thereisalso astatic coefficient of friction. Static friction is defined in asimilar
manner to dliding friction, but it appliesto two surfacesthat are at rest. For agiven pair
of surfaces, the static coefficient of friction islarger than the sliding coefficient, although
for some surface pairsthey are very closein value.

There are several frictional forces that are important in pool. Thefirst isthe
sliding friction of aball on the cloth, Fs. Fs={i(giding)W Where Wis the weight of the ball
(FN=W=Mg where g is the acceleration of gravity). Since the ball weight and the
coefficient of friction are constants for a given ball and for a given table, the frictiona
force of adiding ball isaconstant. The magnitude of the frictional force does not depend
on the velocity of the ball or upon m for the ball aslong as the ball is sliding on the cloth.
The direction of this force does depend on the ball velocity and w, and this will be
examined in more detail in the following discussions. If the ball isnot sliding on the
cloth (e.g. the ball isat rest, or the ball isrolling smoothly without slipping on the cloth
surface), then there is no dliding frictional force.

It isinteresting to consider the nature of the cause of adliding frictional force. At
amicroscopic level, the atoms in the molecul es of one surface are attracted to those of the
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other surface. Asthe object slides forward, new interactions, or bonds, are formed in the
forward direction, maintained momentarily, and then broken as the individual atoms are
pulled apart. However, it is not directly these bonds that cause the friction. Thereasonis
that the same kinetic energy is lost in forming the bond as is gained back again when it
breaks, and there is no net change of energy due to the forming and breaking of these
bonds as the surfaces slide across each other. But for the small amount of time that the
individual atoms interact, vibrational energy of the surface moleculesis transferred to the
other moleculesin the bulk of the objects. (Energy is also transferred in the opposite
direction, but at amuch smaller rate. The net energy flow is from the surface atoms to
the bulk atoms, a consequence of the second law of thermodynamics.) The result of this
energy transfer isthat translational kinetic energy is transformed into vibrations of the
molecules of the bulk materials, or in other words, into heat and sound. From this point
of view of aphysicist, it might be said that it is the heat and sound that cause the
frictional force; thisis somewhat the opposite of the layman’s point of view, namely, that
friction causes the heat.

Problem 1.4. A block slides down an inclined plane without acceleration; what isthe
relation between L and the angle of the slope of the plane?

Answer: The downward force is the weight of the object W=Mg. The component of this
force normal to the plane surface is Fny=Wocos(et) whereet isthe angle of incline. The
component of the downward force tangent to the surface of the planeis Fi=Wsin(z:). This
force is directed down the incline, accelerating the object, and it is opposed by the
frictional force which is directed uphill. Since the object is sliding without acceleration,
al of thistangential force is balanced exactly by the frictional force, Fs=-F;. The
coefficient of friction isthen given by u=F/Fn=tan(e). Thisrelation between slope and
the coefficient of friction is so fundamental that it is sometimes taken as a de facto
defintion.

A dliding block provides a simple conceptual model for understanding several
other aspects of dliding friction. Consider asliding block of mass M on alevel surface
with a dliding coefficient of frictionpt. The downward force of the block is the weight of
the block, W=Mg, and thisforce is exactly opposed by an upward force of the surface;
this means that the block does not accelerate in the vertical direction. The horizontal
forceis constant in magnitude, |Fs|341W=1Mg and the direction of thisforce is opposite to
the velocity which is taken to define the positive direction. Thisfrictional force slows
down the sliding block according to the equation Y% =49 wherethe minussign is dueto
the direction of the force. It isinteresting that this equation does not depend on the block
mass; several equations of motion in the following discussions will be similarly
independent of the ball masses. Integration over time gives V(t)=Vo4igt where Vg isthe
initial velocity at t=0. Of course, thisequation isvalid only aslong asthe block is
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diding. Integration again over time gives the distance x as afunction of time as
x=Vot-¥Y21gt2 where the distance is measured from the starting point.

Since the block is slowing down, kinetic energy is not conserved in this process.
Thisis adissipative system, not a conservative system. How does the kinetic energy
depend on time and distance? Substitution of V(t) above gives

T = YoMV2 = YoM(V3 — 2Vgugt + p2g22 )

=To —H SHOX.

Kinetic energy islost as alinear function of the distance and a quadratic function of time.
When the block slidesto rest, T=0, theinitial energy and total diding distanced are
smply related as To=44%gd. If theinitial energy of the block were doubled, then the
distance that the block slides before coming to rest would also double. However, if the
initial velocity were doubled, then the final distance would increase by a factor of four.
Note also that for agiven initial energy To, if the coefficient of friction were to increase,
then the total sliding distance must decrease, and if the coefficient of friction were to
decrease, then the total diding distance must increase. A related quantity of interest isthe
power dissipation, defined as To %tI . From the quadratic time function, or using the

chainrule T = %%%)t—‘ , the power dissipation for asliding block is seen to be T:uMgV.

The treatment of frictional forces for asliding block are relatively simple; the somewhat
more complicated situations for abilliard ball sliding on atable and for two colliding
billiard balls are treated in the following sections.

How can the coefficient of friction be measured? There are several possibilities,
depending on the equipment available with which to make measurements or on the data
available. (1) One method would be to attach a measuring scale to the block, and simply
measure the force required to dlide the block on the surface without acceleration; this
force divided by the weight of the block would give directly the coefficient . (2) If the
surface can be held at an arbitrary slope, then 4. can be determined asin P1.4. This may
not be always practical (for exampleif the surface is a heavy billiard table). (3) If the
velocity or the energy could be measured accurately at two pointsin agiven trajectory,
then the equation T=TpMgx at these two points could be used to determine Tp and the
product tMg. An independent determination of the weight Mg would then allow . to be
determined. However, velocities are relatively difficult to measure, so this also may not
be practical. (4) Suppose that the block slides a distance d in time tg before coming to
rest. Then theinitial velocity was Vo=gty. Substitution of thisinto the quadratic
distance equation givesp=d/(¥2gtg2). Of course, thisis not an exhaustive list of
possibilities, and many other schemes could be devised based on preparation of the initial
velocity or trgjectory measurements of various types.

A second force istherolling resistance of aball on the cloth. Thisisnot, strictly
speaking, adliding frictional force since it does not invlove sliding surfaces, but the
formal treatment of thisforce is similar to the above dliding frictional force. A detailed
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examination of the forces involved in this situation will be postponed until the next
section. For the present discussion, thisrolling resistance will be modeled as a ball
rolling uphill on an inclined plane. Thisisaconservative model. The dissipative energy
loss of an actual hilliard ball isthen considered to be analogous to the energy loss of the
model ball in the conservative gravity field. Because this model is a conservative system,
it is possible to determine the equations of motion of the ball without understanding the
forces.

For anincline of slopec:, the height above the starting point is given by
h=s sin:), where sis the distance up the incline from the starting point. The potential
energy isthen by given as afunction of s by U(s)=Mgh=sMgsin(:). Inthismodel itis
assumed that there is no energy dissipation through heat. Thetotal energy E=T+U isa
constant, so any kinetic energy lost by the ball istransferred to potential energy in the
gravity field. Thisgivesthereation T(s)=Tg-sin(e)sMg, where To=E isthe initia energy
of therolling ball at the bottom of the incline. It is now seen that the kinetic energy for a
ball rolling on an incline obeys the same equation as for the sliding block, but with the
incline slope, corresponding to sin(e), assuming the role of the sliding coefficient of
friction of the block. However, in the case of arolling ball, the kinetic energy expression
is more complicated, and this, along with the examination of the associated forces, is
discussed in more detail in the following section. Using the chain rule expression, the
power dissipation for the ball rolling up aninclineis given by T= %% % =sin(z)MgV,

where V is determined by the speed parallél to the incline. If, for some reason, it were not
possible to measure the slope of the incline, it could be determined indirectly by
measuring the sin(ex) factor in the above equations in the same manner that the sliding
coefficient of friction . can be measured for asliding block.

The connection between an actual ball rolling on alevel table and this model
problem may be justified by considering the rolling ball at a microscopic level. The
nature of the effective frictional force arisesin part from the compression of the cloth
fibers asthe ball rolls past. Once compressed, they do not rebound immediately as the
ball passes; if they did, then there would be no energy lost in this manner by the rolling
ball. The energy lost by thisirreversible compression of the fibers slows the rolling ball.
Energy of therolling ball is also lost to vibrations of the ball and table, and eventually to
the increased temperature of the surroundings. Asthe ball rolls forward an infinitesimal
amount, it rolls also uphill on the cloth, losing a small amount of kinetic energy. But the
cloth cannot support the ball weight, so it compresses the fibers. Thistransfersthe
potential energy from the gravity field into the spring constants of these compressed
fibers. Asthe ball continuesto roll, the fibers remain compressed for a small time, and
thistime lag prevents the potential energy stored in the fibers from being returned to the
ball kinetic energy. The horizontal distance that the ball rolls on the table can be
measured, but the effective height that it would have risen if the cloth fibers had not
compressed cannot be measured directly. Therefore, the effective slope sin(et), which
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may be associated with an effective rolling coefficient of friction u?rf;“mg), must be

determined indirectly.
Consider aball rolling adistance d on atablein timet before coming to a stop.

At thistime, an effective force is assumed of the form F,= u(erfz)”ing)Mg that opposes the

rolling ball. Newton’s equation F, = MV may be rewritten asuﬁfg”ing)g:-v.

Integration over time resultsin u‘(arf;”mg)gtzvo—v where Vg istheinitial velocity.
eff

(rolling)
Vo:uzr:)”ing)gt and this may be used to eliminate Vo from the distance equation. The

Integration over time again gives You gt2=Vot—d. Thefinal velocity is zero when

effective coefficient of friction for the rolling ball may then be determined from the
equation

eff _d
Rrolling) =T -2 "
59

The ball mass does not appear in thisrelation. The dimensionless quantity table speed is

defined as yu(e:fomng)and issimilarly independent of ball mass. With this definition of

table speed, avery slow tableisin the range of 50-70. Normal table speed is 80-100. A
very fast pool table might have a speed higher than 120. The cloth on abilliard tableis
usually finer and smoother than that on a pool table, and afast billiard table might have a
speed over 150. The force due to rolling resistance is much smaller than that due to
diding friction.

The dliding frictional force and the rolling frictional force of aball on atable are
independent quantities. Consider for example aball on ahard rubber surface; the dliding
friction would be very large, while the rolling resistance would be relatively small.
Alternatively, consider a ball on a Teflon surface with a soft backing; the sliding friction
would be relatively very small, while the rolling resistance would be relatively large. The
uniformity of billiard cloth material limits the range of extremes that are encountered in
practice. The official BCA (Billiard Congress of America) rules specify abilliard cloth
that is predominantly wool. The PBTA (Professional Billiard Tour Association)
requirements are even more specific, and detail a brand and type of billiard cloth, namely
Simonis 860; athough thisis partly a matter of sponsorship, it may be noted that thisisa
relatively fast pool table cloth that results typically in table speeds of 100 to 130 when
newly installed.

Problem 1.5: A ball islagged perfectly on a standard 9' pool table and it is observed that
the ball travels from the foot cushion to the head cushion in 7.00 seconds. What isthe
table speed? What was the initial velocity of the ball asit |eft the last cushion?

Answer: The playing area of astandard 9' pool table is 50" by 100". After accounting for
the ball width, the center of the ball travels (100"-2.25")=97.75" between cushions. The
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acceleration due to gravity is g=386 in/s2. Thetable speedis
1 162 05 ><386(‘—2) xt2 ,
TableSpeed = —g—— = 2=— = S L =1.97x5
Wolling) O 97.75(in)
=1975(7.00%)= 967

Thisisafairly fast pool table. It iscustomary to approximate the g/(2d)=1.97 factor as
2.0 on a9 table. The table speed may then be estimated simply as 2t2 where thetimeis
measured in seconds. For playing purposes, it is usually unimportant to know the table
speed to more than 2 significant figures. The velocity after the last cushion was
_ 2d _ 2(97.75in) :27.9(%1).
t 7.0s
Theinitial velocity is seen to be twice the time-average velocity, which is given by d/t.

_eff
Vo = W (rolling) 9t

Exercise 1.1: Measure the table speed of some of the tables on which you play regularly.
Rather than try to lag a ball perfectly, set up aramp with cue sticks, and adjust the height
of theramp and initial ball placement so that the ball rebounds off the foot cushion and
stops just before touching the head cushion. Disregard the small time it takes for the ball
to achieve natural roll after impact with the foot cushion. Take the average time for
several rolls in order to account for timing inaccuracies.

A third important frictional force is that between two colliding balls. The forces
between two balls change during the collision. The collision timeis very short, so these
forces can be very large in order to transfer energy from one ball to another during a
collision. Thefrictional forces act in adirection tangential to the surface of the ball at the
point of contact between the balls. Thisis shown schematically in Fig. 1.1. Thelinear
forces that accelerate the balls are directed between the ball centers. The resultant force
on aball isthe sum of these two vector forces. That velocity component of a ball due to
the tangential frictional forcesis called either collision induced throw or spin induced
throw, depending on the spinning condition of the balls and on the cut angles involved.
When two balls slide against each other, both balls are accelerated by frictional forces.
The frictional force vector that accelerates one ball is exactly opposite to that which
accelerates the other ball. Note however that the angular acceleration due to the frictional
forces has the same sign on both balls, due to the fact that the opposing forces are applied
to the front of one ball but to the back of the other. Asbefore, to a good approximation
the frictional force isindependent of the speed at which the two surfaces slide against
each other. The force is constant unless the spinning balls “lock” against each other (as
two interlocked gears), at which time the dliding frictional force vanishes.
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Fig. 1.1. The normal forces Fy;, tangential forces due to sliding friction Fr,

the resulting total force F, and the angular acceleration @ are shown
schematically for two colliding balls. The magnitudes of the forces
change during the collision, but the ratio of the tangential and normal
forces are constant and are determined by the coefficient of friction. The
magnitude of the tangentia forces are shown greatly exaggerated. Note
that although the tangential forces acting on the two balls exactly oppose
each other, the resulting angular accel erations have the same sign.

Problem 1.6: Two object balls are frozen together and aligned straight toward the foot
cushion exactly toward a marked spot. The nearest ball is 72" away from the cushion.
The farthest ball from the cushion is hit at an angle with the cue ball. The object ball is
observed to miss the point on the cushion by 4". Assuming that this collision induced
throw is dueto friction, what is the coefficient of friction for these two balls?

Answer: Fp isdirected toward the marked spot, and F is perpendicular asin Fig. 1.1.
The resultant velocity is parallel to the total force vector. The coefficient of friction is
related to the angle of throw c: by

FH_,-Vr_br

FN VN Dn

Substitution of the appropriate distances gives the coefficient of friction as

W= = 00556
72"

tan(a) =
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Exercise 1.2: Measure the collision induced throw angle for several sets of balls at pool
rooms where you play regularly. Generally, if the balls are worn or dirty, they will have eJ
high coefficient of friction, and if they are new or polished, they will have alow
coefficient of friction. Smear some chalk on the contact point between the frozen balls,
and an increased coefficient of friction should be observed. Smear some talcum powder
on the contact point, and a smaller coefficient of friction should be seen. Place adrop of
water (or spit) on the contact point and the coefficient of friction will become essentially
zero. Correcting for collision induced throw is one of the challenging aspects of playing
with different sets of ballsin tournaments, and of playing at different pool rooms.

A fourth frictional force is the static friction between the cue tip and the cue ball.
The cue tip must not slide on the cue ball. If this occurs unintentionally, then a miscue
results and the cue ball behaves unpredictably; if the cue tip slides intentionally against
the cue ball, then an illegal “push shot” has occurred. The static frictional force isrelated
to the normal force and to the static coefficient of friction by the relation i static=F1/FN
where F is the minimum force required to cause the cue tip to slide on the surface of the
cue ball.

F = F sin(e)

Fig. 1.2. The normal forces Fy, tangential forces due to static friction Fr,
and the resulting total force F for contact between the cue tip and cue ball
are shown schematically. The magnitudes of the forces change during the
collision, but the ratio of the tangential and normal forces are constant and
are determined by the impact point and limited by the the static coefficient
of friction.

Problem 1.7: For aparticular cuetip, it is observed that miscues begin to occur when the
cue tip contacts the cue ball at a height halfway between the center and the top of the cue
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ball. What is the static coefficient of friction between the cue tip and the cue ball? If the
static coefficient of frictionis 1.0, what is the displacement at which miscues begin to
occur?

Answer: Refer to Fig. 1.2. The slope of the cue ball at the point of contact. is determined

by
gﬁé

SR8
2
1. @O

R

where b is the displacement away from the center. When the force F is applied to the cue
ball in a horizontal direction, this may be written as a sum of the normal force toward the
center of the cue ball Fn=Fsin(e), and the tangentia frictional force Fr=Fcos(e). The

coefficient of friction and the maximum displacement are related by
g%x_é
R @
.2
1_§9&K9
R @

cot(a) =

Ugtatic = Fi =cot(a) =
N

max O _ _ WUgtatic

R \/1"' ngatic

For bmax/R=1/2,
4! = = =577

Ustatic = ﬁ /3
For pgtatic=1.0,
max 0 — 1 —
—= = — =707
R @2 J2
As seen for these two cases, a higher coefficient of friction allows the cue tip to contact
the cue ball at larger displacements without miscuing.

Exercise 1.3: Determine the static coefficient of friction between your cuetip and a cue
ball. Instead of determining the point of miscue (asin P1.7), hold a ball against a cushion
and stand your cue shaft vertically on the ball. Estimate the distance away from the
center ball, and use the equation in P1.7 to determine pgatic. Wipe your cue tip clean,
removing all chalk, and you should see a smaller coefficient of friction. Experiment with
different kinds of chalk and with different tip conditions. Note that it is the displacement
of the actual contact point of the cuetip that should be measured, and not the
displacement of the cue shaft edge.
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2. Slideand Natural Roll

Suppose that at some time a ball is known to have some (center of mass)
trandational velocity and some spin (about the center of mass). For simplicity, assume
that the spin axisis horizontal and is perpendlcular to the trandational velocity (i.e. the
ball has straight topspin or draw; e.g. V =Vi and E-—Hj ). Asthe ball slides on the cloth
on the table, the friction between the ball and cloth will cause both the translational and
angular velocity to change. Thisforce will act to accelerate the ball, that isto increase or
decrease the velocity, until an equilibrium situation occurs in which the trandlational and
angular velocities “ match” each other, at which time the sliding frictional force becomes
zero. Thisisthe natural roll (also called normal roll, smooth roll, or rolling without
dlipping) situation. Over asmall time dt, the distance traveled by the ball will be Vdt, and
the outside surface of the ball will roll a distance R:zdt relative to the ball center of mass.
Therefore, this “matching” occurs when V=Ru:.

The natural roll condition isimportant to examine because the speed and spin of a
dliding ball are aways being forced toward the natural roll condition by the sliding
friction, and once achieved, natural roll is maintained by the ball until it collides with
another ball or cushion or rollsto a stop.

F

Fig. 2.1. The linear velocity V, angular velocity wm, and corresponding
frictional force F are shown schematically for a backspin shot. V is
positive, whereas F and i are taken to be negative as shown.

Kinetic energy is not conserved during the equilibration period as the sliding ball
approaches the natural roll condition. Thisiseasy to seein the case in which the
trandational velocity and angular velocity oppose each other, asin a backspin shot
depictedin Fig. 2.1. (Positivew istaken to bein the clockwise directionin Fig. 2.1.) Ina
backspin shot, theinitial frictional force acts to both slow down the ball and to decrease
the magnitude of the spin, clearly decreasing simultaneously both types of kinetic energy.

A useful concept to introduce in this discussion is the spin/speed ratio «/V. In
some situations, a more useful quantity is the dimensionless ratio J=(R:/V); for the above
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backspin shot, thisistheratio of velocity at a point on aball on the rotational equator that
is due to the spin to the velocity of the center of mass of the ball. In situationsin which
severa spin components are examined simultaneously, the dimensionless vector quantity
J=(IxJy,J)=Rm/V is useful. As discussed above Jy=+1 corresponds to the natural roll
condition when the velocity is directed along the x-axis.

The frictional force acts on the very bottom point of the ball, where the ball
touches the cloth, and it points in a horizontal direction. The force acts to accelerate the
ball according to the equation F = MV . Integrated over some time period, thisgives a
change of momentum

Ft=M(V- V).
inwhich Vg istheinitial velocity vector. Notethat since F and V point in opposite
directions in a backspin shot; the ball slows down over time. When F and V point in the
same direction, e.g. aball over-spinning with topspin, the ball speeds up over time. Inthe
case depicted in Fig. 2.1, this equation simplifiesto

|Flt=-M(V-Vp).
where the sign of the right hand side results from the fact that the velocity and force
vectors point in opposite directions. (In the general case for positive Vg, F>0 when
Ruo>Vo, and F<0 when Rug<Vg or in other words, F and (J-1) have the same sign.)

The angular velocity of the sliding ball changes according to the equation
" F=lw. For the backspin shot, r=-Rk , F=-|F|i, and m = ] . In thissituation, this
equation simplifiesto RF| =l . Integrated over some time period, this gives

RFIt = I(co - ooo).
Notein Fig. 2.1 that for a backspin shot the frictional force is acting to increase the
angular velocity from an initial negative value to afinal positive value. If the cue ball
contacts an object ball while the angular velocity is still negative, thisis called adraw
shot. If al the spinisremoved by the cloth friction and the ball is spinning neither
forward nor backward upon impact with an object ball, thisis called astun shot. If
forward roll, or in particular natural roll, is achieved prior to collision, thisiscaled a
drag shot. Asshown in the above equation, it istheinitial angular velocity, the sliding
friction between the ball and the cloth, and the time before the collision that distinguishes
these three shots.

Problem 2.1: What is the relation between linear and angular velocity for adliding ball?

Answer: Eliminating the common |F|t from the above two expressions gives
I

—R((D - 0)0) =- M(V- Vo) .
Using the previous expression for | for aball resultsin
V=\- %R(oo- (DO) :
This expression isvalid at any time the ball is diding on the cloth. Although derived
specifically for the backspin shot, this expression isvalid for any frictional force. Note
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that for the backspin shot, V decreases asin increases, and for the over-top-spin situation,
Vincreases asi decreases.

Problem 2.2: Determine the final linear velocity of aball after natural roll is achieved as
afunction of initial linear and angular velocities.
Answer: Natural roll is achieved when the linear and angular velocities equilibrate.
Substituting V=Ru in the expression from P2.1 gives

ViR = $Vo +4 Rog
Note that if theinitial angular velocity were zero, then the dliding ball would eventually
slow down to 5/7 of itsinitial velocity. If theinitial angular velocity matched exactly the
initial linear velocity, Vo=Ruw ., then the linear velocity would remain unchanged. If the
initial angular velocity is negative, as for adrag shot, then the final linear velocity is even
less than /7 of theinitial velocity; for example, if the initial angular velocity is equal to
natural roll, but in the opposite direction, Vo=-Ru ;, then the final velocity is 3/7 of the
initial velocity. If theinitial spinisvery large and negative, then the final natura roll
velocity will be negative; this can occur in masse shots, or in situations involving
collisions with other balls.

Exercise 2.1: Experiment with the drag shot. Use a striped ball in place of the cue ball so
that the spin is easily observed. Strike the “cue” ball below center. Observe how the ball
initially spins backward. The cloth friction slows this backspin until at some point the
ball isnot rotating at all, but is simply sliding across the table. Beyond this point the ball
beginsrolling forward. At some point all sliding stops, and the ball achieves natural roll.
During al of the time that the ball is sliding on the cloth, the speed of the ball is
decreasing. If you have avideo camera, record some of these shots and play them back
in slow motion. The drag shot is useful when playing on dirty or unlevel tables, and a
low-speed impact between the cue ball and object ball isrequired for position. Theinitial
high speed of the cue ball reduces the effect of the unlevel table, and only at the very end
after natural roll is achieved and the velocity is reduced to about 3/7 of the initial velocity,
does the impact occur. The average velocity of the cue ball is about /7 of the initial
velocity, which means that the effect of the unlevel table has been reduced by about 2/7 or
29% from the case where natural roll is achieved immediately.

Exercise 2.2: Experiment with astun shot. A stun shot is when the cue ball has zero
angular velocity about the horizontal axis upon contact with an object ball or cushion.

Set up a straight-in shot with an object ball, and place the cue ball at various distances
away from the object ball. (Use astriped ball in place of the cue ball so that the spin can
be easily observed.) For agiven distance and shot speed, shoot with just the right amount
of backspin so that the cloth friction has time to remove the spin. The cue ball should
stop exactly upon impact, and roll afterwards neither forward nor backward. For afixed
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distance, the slower the shot speed, the more extreme will be the backspin required to
achieve a stun shot impact. Experiment with stun shots on different tables. Sticky tables
(high dliding friction between the cloth and ball) require more extreme backspin than
slick tables to achieve stun. Stun shots are important for position play and, as discussed
in later sections, for judging accurate carom angles.

Problem 2.3: What is the shape of the path taken by a ball before natural roll is
achieved? What is the shape of the path after natural roll is achieved?
Answer: Integration of F = MV twice gives

2
%Ft =M(g- dg- Vot)
1 _2
=qq+ Vot + — Ft
d=4do LYY,

Since the choice of coordinate axes is arbitrary, assume that the axes origin corresponds
to t=0, and that the axes are oriented so that the x-component of the dliding force is zero.
The coordinates of the path are then given by

20 _ @oxG,, 1 200

eve~ &oyg oM &Foys
Because of the choice of axes, the velocity in the x-direction remains unchanged over
time. Us ng the rel ation t=x/Voyx to eliminate t from the y part of this equation gives

x Foy 0 2
vOX ;ax g &2 |\/|v02X {ax

which may be recognized as an equation for a parabola. While the ball is sliding on the
cloth, the path of the ball is a parabola, the shape of which is determined by the initial
velocity and by the frictional force between the ball and the cloth. Thisfrictional force
remains unchanged in both direction and magnitude as long asthe ball isdliding. This
applies to the paths taken by balls after collisions with cushions or with other balls, and
also to the cue ball when struck with an elevated cue stick (i.e. masse or semi-masse
shots). The ball is accelerated by the sliding force until natural roll is achieved. After
natural roll is achieved, there is no sideways force exerted to further accelerate the ball,
so the ball rollsin astraight line.

Problem 2.4: When aball achieves natural roll, what fraction of its kinetic energy is
trandational and what fraction is rotational ?
Answer: Thetotal kinetic energy is

T = T(Trans) + T(Rot) = Y2MV2 + Yoltn2 = 1oMV2 + LgMV2 = 7/10MV2,

Pool Physics 16 Draft: 29-Feb-96




Thisgives

T(Trang _9
T 7

T(Rot) _ 2
T 7

Now that the total kinetic energy expression for anatural roll ball is known, the
issue of rolling resistance can be examined in more detail. The previous conservative
model of aball rolling up an inclined plane will be used to understand the various forces
involved. In the case of aball rolling without slipping up an inclined plane, the result of
these forces is known, namely that Ru =V is maintained as the ball slows down, but the
forces themselves required to achieve this result are not obvious. In order to apply
Newton's laws directly, these forces must be known beforehand. Therefore Lagrange's
equations of motion will be used. The generalized coordinates will be taken to be the
distance up the incline s, the angular rotation of the ball B, and the undetermined
multiplier associated with the constraint equation, A. The expressions for the kinetic
energy, potential energy, and the constraint equation are

T= VoMV + Yolin2

U = sMgsin(e)

f(sB) =R —s=0
The Lagrangian is L=T-U+Af, and the equations of motion are determined from the
equation, % - %% =0, for the three coordinates s, H, and A.. Substitution gives the

|
three equations

~Mgsin@) - —MV =0

AR—lw =0

R -s=0.

Differentiating the last equation twice gives Rw =V s Solving the second equation for
the undetermined multiplier givesA=I VS/RZ. Substitution into the first equation then

gives
. -1
MVg=— (1+W) Mgsin(e) = -7 Mgsin(ct)

= —Mgsin(zt) + Z7Mgsin(et) [rolling without slipping]

= Fgravity + Fconstraint
If, instead of rolling without slipping, the ball were allowed to slide freely, then Newton's
equation of motion in this coordinate system would have been simply

MV s = Fgraity =-Mgsin(e) [with free slipping]

Therefore the sliding ball is seen to slow down faster than the rolling ball, all other things
being the same. The effective force arising from the static coefficient of friction between
the ball and the incline is seen to be 7Mgsin(et), and this force is directed uphill,
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opposing the gravitational force. Because there isno sliding associated with this
frictional force, thereis no energy dissipation in this model system. The only kinetic
energy lost is that associated with the corresponding increase in potential energy. Aswas
done in the previous section for a gliding block, an association with the effective slope
and a coefficient of friction is made, W(rolling) =sin(e:). In the previous section, an

equation of motion was assumed of the form p?::)”ing)g:-v s Itisnow seen that this

assumption was correct, with the association
-1 -1
eff _ | : - | N .
Hirolling) = (1+—ZMR ) sin(e) = (1+—ZMR ) H(rolling) = Y7M(rolling)
When should u(erfz)”ing) be used, and when should [y olling) be used? The answer is that

for arolling billiard ball, it doesn’t matter which coefficient of friction is used, provided
of course, that the corresponding equation of motion isused. The use of the equation of
motion involving W(rolling) has the advantage that once it has been determined for one
object, the same value can be used for other objects made of the same material but with
different shapes, such asrolling cylinders, rolling tubes, rings, or hollow balls. The

quantity Urolling) istherefore, in some sense, more fundamental than is u‘(a:z)”ing). The

eguation of motion for these objects will of course be slightly different, due to the
dependence on the moment of inertia of the equations of motion, as demonstrated in the
following problem.

Problem 2.5: Thetable used in P1.5 is moved to the surface of the moon. The billiard
ball is replaced with a cylinder made of the same material asabilliard ball. How long
will it take for the cylinder to roll the length of the table?

Answer: First determine Wrolling) for the table from the previous data:

eff
Hrolling) = 75H;;jing) = = 00145

5>096.7
For asolid cylinder, I=MR2/2. gmoon=63.8in/s?, about 1/6 the gravity of the earth. The
eguation of motionis

) -1
=_ (1 + M—IRQ-) OmoonH(rolling)

Integration twice over time, then solving for t gives

MR2)™ 3X97.75in B
Omoonttrolling \/ 63.8(in/s°)X0.0145
Solving the same equation for a ball givest=17.2s, aresult that may aso be obtained
simply by scaling the earth time, 7.00s by the factor [Gearth/ Omoon = 2:46. Therefore,

most of the lag time difference is due to the different gravitational forces of the earth and
moon, with a smaller difference due to the different moments of inertia of the cylinder
and ball.
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3. CueTip/Cue Ball Impact

Consider the situation in which alevel cue stick strikes the cue ball. The cuetip
applies aforce to the cue ball at some point on the surface of the ball. This contact time
is not instantaneous, but it is very short. Unlike aball-to-ball impact (characterized by
small tangential frictional forces and therefore resulting in aforce that is directed
essentially between the centers of the balls), the cue tip does not slip on the cue ball
(except of coursein amiscue situation). With these assumptions, the forceis directed
along the direction of the cue shaft. The angular acceleration from thisforceis given by
theequation r ° F =1m. When alevel cue stick strikes the cue ball, the angular
acceleration along the direction of force, F/|F|, is given by

mx—F=(|'1(r’ F))xE =0 .

IH |F
There is no component of angular acceleration around the axis of the cue stick, so thereis
no sideways frictional force between the ball and the cloth; the cue ball didesin a straight
line in the direction of the cue shaft, while rotating about either or both the vertical axis
(i.e. sidespin) and the horizontal axis perpendicular to the cue shaft (i.e. topspin or draw).
This results from the fact that the moment of inertiafor apool ball is proportional to the
unit matrix. (If theinertiatensor of an object is not proportional to the unit matrix, e.g. if
the ball has an embedded off-center weight, then it will in general curve asit slides or
rollsinstead of moving in astraight line.)

First consider the case in which the cue tip strikes the cue ball exactly in the
center. Inthissituationr ”~ F =0 =l m, and thereis no angular velocity imparted directly
to the cue ball. The only thing that occursis atransfer of linear momentum and
trandational energy between the cue stick and the cue ball. It will be assumed that the
contact time is so short that the hand/skin/cuestick effects can beignored. That is, at the
very beginning of the contact time, the cue stick slows down and starts moving slower
than the hand, and the skin begins to tighten, but by the time any significant extraforceis
exerted on the cue stick, the cue ball has already departed and lost contact with the cue

tip.

Problem 3.1: What is the relation between the cue stick energy and velocity, the length

of the stroke, and the applied force? (Assume a constant force is applied by the hand to

the cue stick during the stroke.)

Answer: Integration of the equation F = MSV over time gives Ft = MS(V - VO) = MgV

where F is the force applied to the stick and Mg is the mass of the cue stick. Integration

again gives % Ft? = Ms(x- xo) = Mg inwhich d isthe distance of the stroke. Solving

the first equation for t and substitution into the second gives for the kinetic energy
T=YMgV2 = Fd.

Solving for V gives
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V= ,2Fd
MS
The cue stick energy is proportional to the stroke length and to the applied force, and the
cue stick velocity is proportional to the square root of the stroke length and of the applied
force. It isimportant to note that in the expression T=Fd, the energy does not depend on

the mass of the cue stick. This means that for a given force and stroke length, alight cue
stick will acquire the same energy as a heavy cue stick.

Problem 3.2: What is the relation between the final cue ball velocity and initial and final
cue stick velocity, and the mass of the cue stick?
Answer: Before the impact, only the cue stick has momentum MgVp and energy ¥oMgVo2.
After the collision, both the cue stick and the cue ball have energy and momentum.
Conservation of momentum and energy, assuming a center-ball impact, give

MgV = MgVg + MpVy,

3 MeV§ = . MgV + 3 MpVp -
Solve the first equation for Vs, and substitute into the second equation to obtain
2Mg

Vp =——V
b Ms+Mb 0
Vs:ms;mb 0
S b
Vp _ 2Mg
Vs Ms‘Mb

A typical cue stick weighs 180z, or about three times the weight of a pool ball. In this
case, Vp=%2Vo, Vs=Y5Vp, and Vp/Vs=3, so the cue ball is moving about 3 times faster than
the cue stick immediately after impact. If the masses were exactly equal (avery light cue
stick), then the final ball velocity would be equal to theinitial stick velocity, and the final
stick velocity would be zero; all of the energy would be transferred from the stick to the
ball. If the stick mass were less than the ball mass, then the final stick velocity would be
in the opposite direction to theinitial stick velocity; that is, the stick would bounce back
from the cue ball. Under no condition does Vp=Vg; that is, there does not exist a
combination of cue stick mass and ball mass such that both are moving forward after
impact at the same velocity.

Problem 3.3: What isthe fraction of energy that is transferred from the cue stick to the
cue ball asafunction of the stick and ball masses?

Answer: Using the final stick and ball velocities from P3.2 gives
4AMpMg

4MpM
LR TRV LM R
S S

Let ei=Mg/Mp, be the stick to ball massratio. Then theratio of energiesis given by
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To. o
To (1+ a s)
When ¢:s=1, then this energy ratio is unity, in agreement with the conclusionsin P3.2.

When there is a mismatch of masses, then the efficiency of transfer of energy in the
collision will decrease.

If a60z cue stick results in optimal transfer of energy, then why not use one? If it
isnot optimal, then what is? There are two separate components to the answer. First, it
is not always the most efficient transfer of energy that isimportant, but rather control of
the energy that is transferred to the cue ball. It iseasier to control a heavier stick than an
extremely light one, and the inherent inefficiency from the mass differenceis away to
reduce errorsin the speed of the cue ball. A possible exception to thisisthe break shot in
open-break games such as 8-ball and 9-ball in which the maximization of cue ball energy
isdesired. Thisleadsto the second component of the answer.

As the bicep contracts to accel erate the cue stick on the break stroke, both the
mass of the forearm and cue stick mass are accelerated. To understand how this affects
the final object ball energy in at least a qualitative manner, some simplifying assumptions
may beimposed. Assume that the forearm isathin rod of uniform mass. The moment of
inertia of the forearm would be M+L2/3 where Msis the mass of the forearm and L is the
forearm length. The moment of inertia of the cue stick about the elbow isMgL2. Asboth
the arm and stick are accelerated about the elbow by a constant force F for an angleB, the
total energy isgiven by T=FLH. For agiven stroke length LH and force F, the total
kinetic energy isindependent of the cue stick and forearm masses. Writing the two parts
of the energy explicitly gives

T=To+T =3MsLo® +EMiLw? = TO§+3M—'\L§
where Tg isthe cue stick energy. Although T, the total kinetic energy of the arm and
stick, isfixed by FLH, the fractional division of this energy between the stick and arm is
seen to be determined by the massratio. It isinteresting in this expression that the only
important factor isthe massratio of the forearm and stick; the length of the forearm does
not matter, at least within the current set of simplifying assumptions. This means that the
optimal cue stick weight will be the same for tall players as for short players, provided
the forearm masses are the same. Some players pivot their arm from the shoulder rather
than the elbow on the break shot. The above analysis indicates that the additional arm
length isirrelevant, but with this technigque the entire arm mass rather than simply the
forearm mass must be included into the Ms term. Whether thisis beneficial or not
depends also on the relative forces applied by the different muscle groups involved in the
two stroke techniques.
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The dilemmais now apparent from the above equation and P3.3. In order to
achieve the highest transfer of energy from the cue stick to the cue ball, avery light 6oz
cue stick would be necessary. But in order to maximize the cue stick energy Tp for a
fixed total energy T during the stroke, a very large cue stick mass would be necessary.
Consequently, maximization of the cue ball energy requires some kind of compromise
between these two extremes.

The quantity Tg is the cue stick energy at the end of the stroke, and P3.3 gives the
relation between Tg and the cue ball energy Tp. Substitution of this relation gives

Ty _ AMpM2 _ 402

T (Mp+Mg) (Mg +iM¢)  (1+ag) (s +Zar)
In the last expression, t.s=MJ/My is the ratio of the stick mass to ball mass, and c.f=Ms/Mp,
isthe forearm to ball massratio. For a given forearm mass, the optimum stick massis
determined by differentiating the above expression with respect toeis, setting the result to
zero, and solving for eig as afunction of cis. Thefinal expressionis

-1 1,2
Os(opt) =3 2 T 50

which is an equation for a parabola. Wheneis=0, it is seen that etgopty=1, and the optimal
cue stick mass would be 60z, a result which agrees with the conclusions from P3.3. A
light forearm mass might be 240z, which corresponds to ¢if=4, ¢.g(opt)=2.2, and an optimal
cue stick mass of 13.20z. A typical forearm mass might be 360z, which corresponds to an
optimal stick weight of 15.40z. A heavy forearm mass might be 640z, which corresponds
to an optimal stick weight of 19.30z. A person who breaks with his entire arm, pivoting
at the shoulder rather than the elbow, might have an arm mass of 1500z, which
corresponds to an optimal stick weight of 27.20z

In the last few years, many professional 9-ball players have switched from heavy
break cuesto lighter break cues. These players may till use atypical 19-200z cue for
their normal strokes in agame, but they break with alighter 15-180z break cue. Break
cues of this weight are consistent with the above equations, elbow pivots rather than
shoulder pivots, and slim to medium body types. The actual breaking technique used by
these playersis more complicated than that considered above, and involves pivots about
both the shoulder and the elbow.

Problem 3.4: What is the spin/speed ratio of the cue ball immediately after contact asa
function of the vertical cuetip contact point?

Answer: For ssimplicity assume that the contact point isin the vertical plane through the
center of the cue ball. When the cue tip applies aforce in an off-center hit, the force
accelerates the center of mass, and the resulting momentum is p=MV. The linear

t
momentum is given by the expression p = q:(tq)dtd in which the force is not constant

during the contact time and t is the (very short) contact time between the cue tip and the
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cueball. (Anideal impulsiveforceisone that integrates to a constant momentum change
asthe contact time decreases. A cuetip contacting a cue ball and a hammer driving a nail
are two examples of nearly ideal impulsive forces.) Integrating the angular acceleration
equation in the same way gives pRsin(A)=pb=lw. The quantity b=Rsin@) is the impact
parameter, and is the vertical offset away from a center-ball hit. b ispositive for an
above-center hit, zero for a center ball hit, and negative for a below-center hit.
Eliminating the linear momentum p from these two sets of equations gives

lo _2MR%w

MV = — =
b b

_aRwp_Sadj
ey 8 2eRo

J

If b=0, then the angular velocity w is aso zero, which means that thereis no spin
imparted with a center-ball hit of the cuetip. If the cuetip hits above center, thenbis
positive andw=wy is positive, which meansthat the ball isrolling in the same direction as
the velocity. If the cuetip hits below center, then b is negative and w is negative, which
means that the cue ball is spinning in the opposite direction asin adraw or drag shot.
Note that the above equations are valid only for -REbER, or else b is meaningless; the cue
tip would missthe cue ball. For practical reasons, b is restricted even more due to the
fact that contact points close to the edge of the cue ball result in miscues (see P1.7).
Although determined above for angular velocity about the horizontal axis, the same
eguation applies to angular velocity about the vertical axis resulting from a horizontal
impact parameter.

Problem 3.5: At what contact point byg will the cue ball have natural roll?

Answer: Natural roll occurs when V=Ruw,. Substitution into the above equation gives
bNR = —g R

Noting that the height above the cloth is given by z=R+Db, this point may also be written
INR ™ % R= 10 D

where D=2R is the height of the ball. This point is actualy rather high on the cue ball,

and it isrisky to attempt to hit higher than this due to the possibility of miscuing (see

P1.7). Sidespin that isimparted to the cue ball with alevel stick has no effect on natural

roll, so the set of points on the cue ball for which natural roll is achieved immediately

with no dliding are along the horizontal line at a height 719D above the table surface.

Exercise 3.1: Experiment with shots involving natural roll impact points. Use a striped
object ball in place of the cue ball. Orient the ball so that the plane defined by the stripe
center istilted at various angles away from vertical. The cue stick should be held as level
as possible and should be within the plane defined by the stripe. The cue tip contact point
should be exactly in the center of the stripe at a height 710D above the table. When
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|executed correctly, the stripe will appear “ stationary” asthe ball rolls. A small error in |
| the contact point, or in the ball setup, will result in a small wobble of the stripe on the |
| rolling ball.

a A b A
Z V4
7 N
Y < Nl | y

Fig. 3.1. The cue tip contact points corresponding to various arbitrary
sidespin/speed ratios are denoted by the thin lines. Figure a denotes
constant spin/speed ratios immediately after contact with the cue tip; these
are vertical straight lines. Figure b denotes constant spin/speed ratios after
natural roll is achieved; these are straight lines that all intersect at the point
(¥,2=(0,0). In both cases, the larger offsets from the center are associated
with higher spin/speed ratios.

Problem 3.6: Which cue tip contact points will result in the same sidespin/speed ratios
immediately after contact with the cue tip? Which contact points will result in the same
sidespin/speed ratios after the cue ball achieves natura roll?

Answer: Consider the coordinate axesin Fig. 3.1. The z-coordinate is the height above
the cloth, and the y-coordinate is the distance away from the vertical plane through the
center of the ball. by =y isthe horizontal impact parameter, and b=(z-R) is the vertical
impact parameter. Denote the point of contact with coordinates (y,z). Intermsof the
linear momentum p, the initial forward velocity and forward rotation are given by

woy = pz-R) _5p(z- R
| 2MR

The forward rotation depends only on the height of the cue tip contact point zand not on
the sideways displacement y. Upon achieving natural roll, the final forward velocity (see
P2.2) isgiven by
= 5p + 5p(Z- R) :Eia—zo

™ 7MR TMERZ
The sidespin (i.e. the angular velocity about the vertical axis) is assumed to be unchanged

-5 2
VNR =% Vo +% Rogy
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by the frictional forces of the diding ball. From P3.4, the initial, and final, sidespin about
the z-axisis given by
_&dy g, _ 9Yp
2 _éZRzg'VO " 2RM
The sidespin depends only on the horizontal displacement, y. The sidespin/speed ratio for
theinitial velocity is given by
Ro, _ 5y
J, = =—=
Vo 2R
Thisratio depends only on the horizontal impact parameter y, and is independent of the
ball speed Vg and vertical contact point z. The same ratio would occur with a soft hit as
with avery hard hit.
Taking the ratio of the sidespin and final natural roll velocity gives

J = RU)Z :Ziailo

where J;NriS the desired spin/speed ratio. The set of points (y,z) that correspond to the
same Jz NR are given by the straight line defined by

& 7 6
z=§ -y
€2J;NRD

The lines corresponding to several J;Nr areshownin Fig. 3.1. Itisinteresting that
exactly the same effect may be obtained by striking the cue ball at any point on agiven
straight line, provided the cue ball has sufficient time to achieve natural roll through
diding friction. For adesired final velocity, ahigher initial velocity isrequired for small-
z contact pointsin order to overcome the drag. Note that higher sidespin/speed ratios
(larger J;NR) are associated with straight lines closer to horizontal, and smaller ratios
(smaller J; NR) are associated with more vertical slopes.
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Line of constant
spin/speed ratio
contact points

“Small Circle”
of aim points
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Point of minimal
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-

(0,0)
Fig. 3.2. The set of points that correspond to the minimal displacements
from center ball for various spin/speed ratios after natural roll is achieved
fall on asmall circle of radius R/2 that touches the bottom point of the cue
ball.

Problem 3.7: Of the set of points (y,2). that correspond to a constant natural-roll
spin/speed ratio J; Nr, Which point (yo,zg) corresponds to the smallest displacement from
center ball?
Answer: Consider Fig. 3.2. All the points a given distance from center ball will form a
circle. The smallest circle that touches the desired straight line, as determined in P3.6,
will define the smallest displacement that gives the desired spin/speed ratio. The point at
which this smallest circle touches the appropriate straight line is denoted (yo,zg). At this
point, the curve defining the circle and the straight line will be tangent, and the three
points (0,0), (O,R), and (yo,zo) will form aright triangle. Let ez be the angle away from
vertical asindicated in Fig. 3.2. Thetangent of thisangle is given by tan(z:)=yo/zo, and
also by tan(e:)=(R-zg)/yo. Equating these two expressions gives

¥ = (R~ 7).
Completing the square on the right hand side of this equation and rearranging gives

2 2 2
R AR
Thisis recognized as the equation for acircle of radius 5 R centered at the point (0,5 R).
Contacting these points with the cue tip is called aiming on the small circle. When a
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player aims on the small circle, and the cue ball subsequently achieves natural roll, the
desired spin/speed ratio J; Nr IS achieved with the minimal displacement from center ball.
It is possible to achieve much higher spin/speed ratios when the cue ball is allowed to
achieve natural roll than the ratios that can be obtained immediately after cut tip contact
as demonstrated in the following problem.

Problem 3.8: What isthe natural roll sidespin/speed ratio, Ru/VNR, for the equatorial
cue tip contact point P1:(y1,zl):(% R R)’? What is the natural roll sidespin/speed ratio

for the contact point P2:(y2,22):(€2L R3 R)? At what contact points Pa=(y3,z3) would the

initial spin/speed ratio, Ru Vo, be the same as the natural roll spin/speed ratio of P>?
Answer: From P3.6 the natural roll spin/speed ratio for P1 is given by

R0 _TBHO . T, 40

eVNRZ 2€20 22
The natural roll spin/speed ratio for P2 is

TR0 _TBO_T 4.

eVNRO 2ez0 2
Although the displacements away from center of these two points are the same, namely
R/\/2 , the sidespin/speed ratio for the second point is over 41% larger than the first
point. The second point P2 ison the “small circle” and therefore results in the maximal
natural roll sidespin/speed ratio for this displacement distance.

In order to achieve a comparable initial sidespin/speed ratio

I_Roz_S&g

2 V, 2€R@

P3=(y3,%) = (-g R,Z)
However, the set of points P3 are not on the cue ball. Therefore, it isimpossible to
achive such alarge sidespin/speed ratio without taking advantage of the drag to reduce
the ball velocity. For practical purposes, a sidespin/speed ratio of 3.5 is about aslarge as
can be attained with a cue tip impact with alevel cue stick. Larger ratios can be achieved
only with elevated cue stick strokes (masse) or with collisions involving other balls.

It is sometimes convenient to think of the cue ball spin and velocity at any
moment in time for adliding ball in terms of an “effective cue tip contact point”. That is,
for agiven linear and angular velocity of a cue ball, there exists a contact point on the cue
ball at which, if the cue tip where to strike a stationary ball at that point, with the correct
velocity, the result would be to reproduce exactly the same spin and speed. Because the
linear and angular velocities change as the ball dides, the effective contact point istime
dependent. From P3.6, the horizontal and vertical components of the spin are related to
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the vertical and horizontal components of the impact parameter of the cue tip contact
point according to

where the time dependence of the angular and linear velocities due to the cloth friction on
the dliding ball from Section 2 have been used. The origin t=0 is taken in the above
equations to be the time at which the cue tip strikes the ball.

Problem 3.9: Show that the set of effective contact points corresponding to bye‘ff (t) and
b (t) for adliding ball lie on a straight line passing through the coordinate points
(v,2=(0,0) and (y,2)=(by(0),R+b(0)).
Answer: Let bSff be considered as a function of by&ff and defined parametrically through
thetimevariablet. Solve thefirst equation above for t in terms of byeff, and substitute
into the second to give

(R+5"0) _(R+5"(0)

05" (1) 65" (0)

Theright hand side of this equation is time independent. Therefore, the slope of the
curve defined by the points (y,2)=(by&f(t), R+bAf(t)) is a constant, independent of time,
and the set of time-dependent effective contact points lie on astraight line. The distance
(R+b£f(t)) isthe height of the tip contact point above the cloth as seen for examplein
Fig. 3.2, and the distance by&f(t) is the horizontal tip displacement. Therefore, the line
passing through the point (0,0) at the bottom of the ball to the initial point
(by€f(0),R+b,£(0)) has the same slope as the rest of theline. The line segment of
effective contact points ends when b£f(t)=25R, at which time the ball achieves natural
roll.

The result of P3.9 allows the player to compensate accurately for the effects of
table friction on the spin axis with the following approach. First determine the desired
spin axis at the eventual position of the cue ball. A stun shot for example, whichisa
frequent goal, would have avertical spin axis at the time the cue ball collides with the
object ball. This spin axis corresponds to some effective contact point (by€f(t),R+b,(t)).
In the case of a stun shot, this point would have coordinates (byEff(t),R) and correspond to
pure sidespin. The player must then estimate, based on shot speed and the cloth friction,
the required vertical offset below center in order to achieve a stun shot. Let thisvertical
distance be denoted &i. The player then draws an imaginary line from the point
(byerf (t),R), corresponding to the desired target spin state of the cue ball, to the point (0,0).
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The point on that imaginary line that corresponds to (byEsz (0),R4) isthe desired contact
point. Other final spin states would be estimated in the same manner. The straight lineis
always drawn from the final effective contact point to the origin (0,0), and the player
works backward in time, so to speak, from the final spin state of the cue ball to the initial
tip/ball contact time. If, during this process, the actual contact point (byeff (0),b5(0)) is
judged to be outside the boundary at which miscues begin to occur (see P1.7), then the
desired shot is not possible, and the player should seek other alternatives.

Problem 3.10: What is the relation between the cue stick velocity immediately before
contact, the cue ball velocity immediately after contact, and the impact parameter b?
(assume that the total kinetic energy is conserved)
Answer: Conservation of linear momentum and kinetic energy give

MgV = MgVg + MpVy,

$MVE =3 MVE + 3 MV +3 1 wh

2Vo

It may be verified that this expression agrees with that of P3.2 when b=0. It may now be
understood why it is desirable to avoid spin on the cue ball during the break shot. For a
given cue stick energy, or velocity Vg, any spin corresponding to nonzero b has the effect
of reducing the cue ball velocity and the translational kinetic energy; the maximum cue
ball speed is achieved with a centerball b=0 contact point. Theratio V/Vgisplotted asa
function of impact parameter for some selected ball/stick massratiosin Fig. 3.3.
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Fig 3.3. The ratio of the cue ball velocity Vy to the before-collision cue
stick velocity Vo is shown as a function of the vertical impact parameter
(b/R) for some selected ball/stick mass ratios.

Problem 3.11: What isthe vertical impact parameter that maximizes the ratio VNr/Vo?
Answer: From P2.2, P3.6, and P3.10, the natural roll velocity is given by

e . 0O
1430

Vyg = 8V +2 Rop = (2)7 °RC_V

NR=7Vb ™7 LL)b-('7)(; M p 2t 0
(‘!‘1+ b+523\_0 -

Solving for the velocity ratio, differentiating with respect to b, setting the result to zero,
and simplifying gives

@0 - . 1+ Z + _2%0
€ RPmax Vg 5 5eMgo
For a 60z ball and an 180z stick, the optimal impact point is given by
ad—og = 0.238 [Mg/Mp=3]
and for a 24 oz stick the optimal impact point is
f—og = 0.225 [Mg/Mp=4]
R max VNR

This range includes most common stick weights and shows that the optimal impact point
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isonly weakly dependent on the stick weight in thisrange. In both cases, the impact
point is between centerball b=0 and the natural roll height b=25R. Theinitial cue ball
velocity is maximized at b=0, but %7 of this velocity is lost upon achieving natural roll to
diding friction; at b=75R thereis no velocity loss due to sliding friction, but the initial
velocity isrelatively small due to the energy and momentum transfer conditions between
the stick and ball. The above contact point is the optima compromise between these two
extremes. Maximization of the natural roll velocity is the same as maximizing the natural
roll energy, and is the same as maximizing the distance that the ball rolls before stopping
dueto rolling resistance. Because this distance is maximized, this also means that the
distanceisrelatively insensitive to small deviations of the contact point away from this
optimal value. Thisismost useful when cue ball placement is of utmost importance such
as, for example, during the lag shot at the beginning of amatch. Theratio VNr/Vo is
plotted as afunction of impact parameter for some selected bialllstick maas ratios in Fig.
3.4.

15 >

0.5
V,
[ My =1 /
Ms

sl
eR9

Fig. 3.4. The ratio of the final natural roll cue ball velocity VyNR to the
before-collision cue stick velocity Vg is shown as a function of the vertical
impact parameter (b/R) for some selected ball/stick mass ratios. For a
given ball/stick mass ratio, the optimal contact point for a lag shot is
determined by the flat region near the curve maximum.
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4. Collisions Between Balls

Consider the motions of two colliding balls. One ball is assumed to be moving
before the collision, and both balls are assumed to be moving afterwards. For this
discussion, assume that the initially moving ball is the cue ball, and the initialy stationary
ball isan object ball. Asthetwo balls collide in an off-center hit, the frictional forces
acting tangential to the surfaces are relatively small (e.g. compared to the frictional forces
between a ball and the cuetip). All of the remaining forceis directed along the line
between the centers of the balls.

Fig. 4.1. Pictorial representation of the conservation of momentum vector
relation Vo=Vpt+Ve The angles C and D are supplementary and satisfy
the relation C+D=p.

Consider first the ball motions just before the collision and just after the collision;
in this situation, the friction between the cloth and the sliding/rolling balls has not had
time to affect the ball trgjectories. Linear momentum (p=MV) is conserved in both the x-
and y-coordinate directions. Represented with vectors, the vector sum of the final
momentum of the two ballsis equal to the initial momentum of the cue ball. Eliminating
the mass M of the balls, results in the vector relation V g=V+V ¢ between the initial and
final velocities. Thisrelation is shown pictorially in Fig. 4.1. The final velocity of the
cue ball V¢ has been drawn twice: once with its base common to that of the Vi, vector,
which is consistent with both balls departing from the same collision point on the table,
and again with its base at the end of the V', vector to show pictorialy that Vo=Vp+Ve.
The angles D and C are supplementary and are related by (in radians) C+D=p, and
consequently, cos(C)=-cos(D).
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In addition to momentum, energy is also conserved in this collision to a good
approximation. Therelatively small amount of energy that islost is turned into sound or
heat within the balls. An elastic collision is onein which energy is assumed to be
conserved, so this energy loss will be denoted Ejnglagtic. AS discussed in the previous
sections, there are two kinds of kinetic energy, translational and rotational, associated
with each ball. Equating the energy before and after the collision gives

To(Trans) + To(Rot) = Te(Trans) + Te(Rot) + Th(Trans) + Th(Rot) + Einelastic
Collecting all the T(rot) terms together, and multiplying by 2/M givesthe relation

VG =V§ + V¢ +Dgagic +Dinelasic = Vi +V¢ +Diota
with

2
Delastic v (Tc(Rot) +Th(Rot) = Toy Rot))
2

Dinglastic = 17 Eindastic
The term figagic depends on the total change of rotational energy. The contribution
Lo agic May be positive, zero, or negative, but the term &jnaagic IS dways positive, since
it represents an energy lossin the collision process. There are two types of contributions
to Ejnaastic, the first type of energy lossis due to the frictional forces of the sliding balls.
These frictional forces result in the exchange of energy between the various trandational
and rotational components. Just asin the case of the simple sliding block, the frictional
forces are intimately related to the inelastic energy loss; without thisinelastic energy loss,
there would be no dliding friction. Aswill be seen in the following discussions, this
inelastic energy loss can be determined by analysis of the resulting momentum exchange
between the balls. Other contributions to the inelastic energy loss involve the imperfect
transfer of energy between the balls. For example, the sound made by the colliding balls
represents atransfer of kinetic energy from the collision process to the surroundings.
This energy loss would occur even in the absence of sliding frictional forces. In the
present discussion, this latter type of energy loss will not be considered quantitatively in
the analysis. With this simplification, both the elastic and inelastic contributions to figta
are assumed to be associated with the tangential forces of sliding friction.

The law of cosines for an arbitrary triangle with sides a, b, and c with
corresponding angles A, B, and C is

¢ = a2 + b2 -2ab cos(C)

This alows the angles of atriangle to be related to the lengths of the three sides. In
particular, the sides of the triangle resulting from the pictorial representation of the
conservation of momentum relation may be related to the departure angle. Comparing
the law of cosines with the above velocity equation gives the relation

_ -Diota _
= —== = D
N VA YA I
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between the angles C and D and the change of trandlational energy termfiigtg. If thereis
no trangdational kinetic energy loss during the collision of the balls, then f4ot5=0,
cos(C)=0, and C=p2 isaright angle (i.e. 90 degrees). In thiscase, the law of cosines
reduces to the familiar theorem of Pythagoras. |f C=p/2, then D=p/2 and the two balls
depart at exactly aright angle. Inthisinitial discussion it will be assumed that the balls
are rotating about the vertical axes only; the more general situation is examined later. If
thereis no rotational energy change during the collision, then figa4ic=0. There are three
situations in which there will be no total rotational energy change during a collision.

First, if thereis no friction between the balls, then there will be no tangential forces acting
at the point of contact. Thisis, of course, an approximation, but for many shots such an
approximation is sufficient, and in any case it defines a convenient reference point. The
second situation in which no spin change occurs is when the cue ball has just the right
amount of outside spin so that the ball surfaces are not moving relative to each other
during the (very short) collision time. In this case the cue ball spin is unchanged, and the
object ball acquires no spin during the collision. The third situation in which no total
rotational energy change occursiswhen the cue ball has just the right amount of inside
spin so that all of the cue ball spinistransferred to the object ball, and the cue ball departs
with no spin. Thefirst situation isan ideal, and occurs only with no friction between the
colliding balls; fi0t5=0 in this case for all collision situations. The second situation is
independent of the ball friction, but depends on matching exactly the outside spin and the
cut angle; Aot =0 for this situation since both components vanish when thereis no
friction. The third situation depends on matching the amount of inside spin with the
friction between the balls and the cut angle; since there are accel erations associated with
the frictional forces, there is a nonzero fijng agic component, fiqtgt 0, and therefore the
departure angle will differ from p2.

To appreciate the importance of spin transfer, consider a cut shot with ball
friction, when the cue ball has no spininitialy. In thiscase, the Torot) term will be zero,
but both Te(rot) and Th(Rot) Will be nonzero. The cue ball acquires some sidespin by
rubbing against the object ball, and the initially motionless object ball acquires some
sidespin by rubbing against the cue ball. In this case, both & g agic>0 and &inelagtic>0, the
angle C will be larger than p’2, and the angle of departure D will be smaller than aright
angle. In actua practicethisisasmall effect, in the neighborhood of 2-4 degrees
depending on how sticky are the pair of colliding balls, but a4 degree angle, over 8 feet
resultsin adeviation of 6.7", or about half adiamond on a 9' table (tan(z)=d/L with
deviation angle:, distance L, and deviation distance d). When referring to the resulting
object ball deviations, this effect is called collision-induced throw, and clearly this must
be accounted for, to some extent, on any but the most trivial of shots.

| Problem 4.1: What are the conditions in which i g 54ic Will be positive, zero, and |
| negative? (assume al spins are about the vertical axes) |
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Answer: Substituting the rotational energy expression gives

Dgasic =% Rz(®§+w§ - 00%)
where al angular velocities are relative to the vertical axes of each ball. However, any
change of angular velocity in the cue ball must be compensated exactly by a
corresponding change in the object ball angular velocity, since the frictional forces on
each ball are equal but opposite in direction.

Wo =We - Wp .
Substitution of thisrelation gives

Delastic =§ Rwpo -
When the final spins of both balls are in the same direction (i.e. both are clockwise when
looking down on the table from above, or both are counterclockwise), then figagic Will be
positive, cos(D) will be positive, and the angle of departure of the two balls will be <p’2.
When the final spin of either the cue ball or the object ball is zero, then & g agic Will be
zero, and the departure angle will be £p72, and the magnitude will depend entirely on
Ainelagtic Which is always nonnegative. These are the only situations that result in
Agagic=0. When the final spins of the two balls are in opposite directions (i.e. one
clockwise and the other counterclockwise), then & g agic Will be negative, and the
departure angle will depend on the relative magnitudes of the two components g agtic
and i agic. Note that cos(D) depends on the final spin/speed ratios of the balls, so
within the current set of simplifying approximations, the contribution of fgagic to the
departure angle is independent of the overall shot speed.
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Fig. 4.2. The effects of the diding frictional forces on the object ball and
cue ball are shown in detail on the after-collision velocity vectors. Two
coordinate systems are used in the analysis of object ball throw. The first
is relative to the initial cue ball velocity Vo, the second is appropriate to
describe the after-collision velocities. The vertical z-coordinate is not
shown, but is directed out of the plane of the figure. The anglee: would be
the object ball cut angle if there were no friction.

The above qualitative analysis did not require a detailed examination of the forces
during the collision process. These forces and the resulting ball trajectories are now
examined in more detail. For this pupose, it is useful to define two coordinate systems as
shown in Fig. 4.2. Thefirst coordinate system, denoted (X',y',Z), is appropriate for the
initial cue ball velocity before the collision; the second, denoted (x,y,2) is the natural
coordinate system to describe the trajectories after the collision. Unit vectors along these
two coordinate axes satisfy the transformation relation

A eacos(a) sin(a) 0586

¢je=¢ sin(a) cosfa) 0:5]7

&gy € 0 0 12%kg
It is convenient to take the origin of the (x,y,z) coordinate system to be the cue ball center
at the moment of contact with the object ball. With this choice, the contact point of the
cue ball and object ball lies on the x-axis. In the absense of friction, the object ball would
depart aong the x-axis and the cue ball would depart along the y-axis. The frictional
forces are tangential to the point of contact, and therefore liein the yz plane. The
direction of thefrictional force is determined by the velocity of the contact point of the
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cue ball at the moment of contact. The contact point velocity is the sum of the linear
velocity
Vo = Vi ¢=Vo(cos{a)i +sin(a)j)

and the angular velocity

A A A

i j k
Wy rep=Rwg i =logx woy o= R(U)Ozj - (UOyk)
R 0 0

If the cue ball is struck with alevel cue stick (i.e. no masse), then the cue ball rotation
may be written as

Wy = mgy]¢+ w@zlz(t: - (D@ySin(O(,)’i +wdy Cos(oc)] + (DOZIA<
w @, <0 for backspin, m&, =0 for astun shot, and w&,>0 for topspin. w§, =wq,
corresponds to sidespin. The resulting contact point velocity is

Vep =Vo cos(a)i + (Vosin(a) + Rw OZ)] - Rogy cos{a )k

=Vepxl +Vepyl +VepK

Itisthe sign of Vcpy that determines the direction of throw of the object ball. Vcpy >0
results in throwing the object ball in the +] j direction, Vepy <O resultsin - j throw, and
Vepy =0 resultsin no throw. It isinteresting that, for a given anglee, Vepy depends only
on the cue ball sidespinwg,. Cue ball topspin or draw does not change the direction of
throw, but it does change the magnitude of the throw.

The Vepx component of the contact point velocity is directed exactly along the

object ball center of mass. Asthe balls collide, the momentum component px=MV¢px is
transferred entirely from the cue ball to the object ball. This momentum istransferred

t
during the very short collision time t according to the equation ppy = (‘aFX(td)dtG. If

there are any tangential components of the contact point velocity, then at any time during
the collision there is atangential frictional force with magnitude given by
Fa (t) = uppFy(t) whereppp isthe ball-ball sliding coefficient of friction. The direction

of thistangential force is determined by the tangential components of the contact point
velocity. A unit vector in thistangential direction may be defined as

N ch _ cpy] chzr(
en =
|V cp” | | CPyJ chzkl

(Vosin(a) + Riy)j - Rugy cos(a)k
= 75
§Vo sin(a) + Rw 02)2 + (Rw@y Cos(a))zg

= cog(y )] +sin(y )k
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with obvious definitions for the horizontal component cos(y) and vertical component
sin(y). The vertical component of this force direction sin(y) either works in conjuction or
opposition to the weight of the ball; it does not affect the direction of the cue ball or
object ball velocitiesin the plane of the table after the collision. However, the horizontal
component of the force cos(y) does affect the object ball direction. It isthis horizontal
component of the force that resultsin the object ball throw. Fig. 4.3 shows the possible
combinations of directions for the unit vector e and the geometrical meaning of the
components cos(y) and sin(y). The factor cos(y) may be thought of as a geometrical
efficiency factor in converting the frictional forces into throw velocities.

A:

Draw
@y <0
y
-«
Topspin
@y >0

Fig. 4.3. The unit vector e~ , pardlel to the direction of the dliding
frictional force on the object ball, is decomposed into the horizontal and
vertical components characterized by the angley. This force is applied to
the object ball at the contact point, and an opposing force is applied to the
cue ball. This force is tangential to the ball surfaces and lies in the yz-
plane. The direction of the unit vector depends on the cut angle and the
spin axis of the cue ball at the moment of the collison. The object ball
throw is proportional to the horizontal component of the frictional force.

The object ball throw is determined by the y-component of the frictional force.
Substitution of the above decomposition of ex givesthe relations

K d
Poy = @ Fry (t9dte= cos(y )upp @ Fx (19dte=cos(y )upnPox

Viy = cos(y ) pbViox
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The horizontal component of the tangential frictional force resultsin the throw velocity
Vy being added to the object ball velocity, and the opposing frictiona force actsto
subtract exactly this velocity from the post-collision cue ball velocity. Because the factor
cos(y) depends on several parameters, it is useful to consider some special cases.

Problem 4.2: How does the throw angle e defined by tan(e)=Vp/Vhx, depend on overall
shot speed?
Answer : Rewriting the cos(y) expression in terms of spin/speed ratios gives

(Si n(a) + —R$O°Z
cos(y) = — "7
; Rwo, wdy 0 9
gsn(ah A ) s cos(oc)g’-a

The geometrical factor cos(y) is seen to depend entirely on spin/speed ratios, not overall
shot speed. The throw angle is e=arctan(Vhy/Vpy)=arctan(t ppcos(y)). The velocity ratio,
and therefore the throw angle e isindependent of the shot speed. In practice, thisresult is
not entirely true; the throw angle decreases slightly for very hard shots. This change of
throw angle with shot speed is due to a slight speed-dependence of ppp. Fig. 4.4 shows
the dependence of the object ball throw factor cos(y) as a function of the sidespin/speed
ratio (Rugz/Vo) for a specific cut angle of p/6 (ahalf-ball cut) for several values of the
topspin/speed ratio.

Problem 4.3: For astun shot, »gy,=0, how does the throw velocity depend on the cue

ball cut anglec?
Answer: For a stun shot, the cos(y) factor reduces to the form
cos(y) = Y. = (Vosin(a) + Rog, )

|chy| |V0 S n(a) + RwOZl

The sign of the cos(y) factor is determined by the initial velocity component, the cut angle
e, and the sidespinuigz. The throw velocity is then given by

Vby = #4pb Vox
If the cue ball has no sidespin, then cos(y)=+1, and Vy = 1pbVpx for the shot anglein Fig.
4.2. Thisresult was assumed in P1.6, as away to determine ppp, but it is now seen with a
careful analysis that this assumption was indeed correct [provided the frozen object ball
acts the same as a stun-shot collision]. The only dependence of the throw velocity on the
cut angleisin thedirection of the frictional force. Fig. 4.4 shows the dependence of the
object ball throw factor cos(y) as a function of the sidespin/speed ratio (Ruo/ Vo) for a
stun shot. Thereis an abrubt change in value as Vpy changes sign.

=1 [for w@,=0]

Problem 4.4: For anatural roll cue ball, Rwgy=Vo (or areverse natural roll cue ball,
Rw @, =—Vo) how does the throw angle depend on the cue ball cut anglee.?
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Answer: For anatural roll cue ball, the cos(y) factor reduces to the form

. )
Cein(r) + 2029
e VO 1]

cos(y) = 7 [NR or RNR]
Fe Ro (32 262
cSsin(a) +—22% +cos(a )+
ée Vo a9 g

In Fig. 4.4, thisfactor is plotted as a function of sidespin/speed ratio for a specific cut
anglec:=p/6. Thethrow angleis determined by e=arctan(ippcos(y)). Although the slope

is steepest in the region near V cpy=0, the slope is not as steep in this region as that for
smaller values of |Rw@,/Vol.

Object Ball Throw Factor
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Fig. 4.4. The object ball throw factor cos(y) is shown as a function of the
cue ball sidespin to speed ratio (Rugz/\Vo) for selected values of of cue ball
topspin/draw. The slope of the given curve determines how sensitive is
the object ball throw to small variations in the sidespin.

In practice, it isimpossible to achieve an exact stun shot. There will aways be
some small value of w@y,. Similarly, the quantity Vepy=(Vosin(e)+Rugz) will never be
exactly zero; it may be very small, but it will never be exactly zero. Thisleadsto the
guestion of how the throw angle depends on small variations from these limiting
conditions. The answer is that the direction of the unit vector ex becomes very sensitive,
rotating wildly even with very small changesin the cue ball spin. Both the numerator and
the denominator of the components become small, but without a definite limit.
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Therefore, the cos(y) factor can vary between —1 and +1, and the throw velocity can vary
anywhere between 4ippVpy. and HippVhy. For small values of oy, the slope of the

cos(y) curve becomes very steep; this steepness reflects the sensitivity of the object ball
throw to the sidespin. This correlation of steepness of slope with small g, values may

be seen in Fig. 4.4. This slope reflects the sensitivity of the throw factor cos(y) with

respect to changesin the sidespin. The sensitivity of the throw factor with respect to

changesin the topspin is related to the derivative of cos(y) with respect to the other
spin/speed ratio (Rm @, /Vo).

Problem 4.5: What is the sensitivity of the object ball throw with respect to both
components of the cue ball spin?

Answer: It is conventient to characterize the sensitivity in terms of the spin/speed ratios
Jo=(Ru A/ Vo) and Joy=(Ru'0y/Vo). The sensitivity of the throw factor to the cue ball spin
is characterized by the derivatives

doos(y) - (sin(a) +Jg,) Joy cOS* (ct)
- 52
Moy Rin(a) +36,)? + (Joy cos(a))C
deos(y) _ (3oy cos(a))’
o, %

Fsin(e) +30,)° + (Joy cos(a))zg

The first equation gives the sensitivity of the throw with respect to changes in the topspin
or backspin of the cue ball, the second equation gives the sensitivity with respect to
changesin the sidespin. When Joy is small, then the slope of the cos(y) factor is
approximately

2
doos(y) _ (Joycos(a))
do;  |sin(c) + Jog°
This shows why the slope of the cos(y) curve becomes essentially vertical in Fig. 4.4 as

the sidespin Jo, passes through the zero point of Vcpy and the denominator of this
component of the sensitivity vanishes.

[for smallJoy]

A combined measure of the sensitivity of the object ball throw to the cue ball spin
may be defined as

.2 2
F(30) = g‘\jCOS(Y)g , &lcos(v)9
0 e dJoy g € d‘]OZ (4]

For values of Jg that correspond to small F(Jg), the player is alowed larger margins of
error in shot execution (e.g. in the accuracy of the cue tip contact point) and in judgement
(e.g. in estimating, and compensating for, the object ball throw). Regionswith large
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F(Jo) are those where very small errorsresult in large variations in the object ball throw;
these are the regions that the player should try to avoid. Fig. 4.5 shows a contour plot of
the sensitivity F as afunction of the two components of the cue ball spin, Joz and Joy, for
the same cut angle aswas used in Fig. 4.4, namely e:=p/6 (a half-ball cut). It may be
observed that the regions of |east sensitivity are those with small Joy (i.e. closeto being a
stun shot), and large sidespin |Jo; | (i.e. corresponding to extreme underspin or overspin).
Regions of high sensitivity are seen to correspond to Vepy=0 (i.€. to Jo~=-si n(e)=-5).
The highest sensitivity contours correspond to the region near the point Vepy=0 and
Joy=0; amagnified view of thisregion isshownin theinset in Fig. 4.5. The sensitivity of
the throw angle becomes enormous in this region.

With this sensitivity in mind, it is possibly awise tactic to avoid these conditions
so asto avoid the large uncertainty in the throw angle. That is, stun shots with outside
spin should be avoided, according to this argument, when the effects of throw might be
critical to the success of the shot. This uncertainty may be avoided in practice by
ensuring that the numerator or the denominator (or both) are significantly different from
zero at the moment of collision of the cue ball with the object ball. This may be done for
agiven shot either by avoiding stun-shot spin (i.e. ensuring wdy* O thereby reducing the
magnitude of the cos(y) factor), or by avoiding the V¢py=0 condition (thereby producing a
predictable, although nonzero throw), or by avoiding both simultaneously.

It should be pointed out that this recommendation is somewhat contrary to that

given by some other players, teachers, and authors. Their argument is that minimizing
the Vepy factor will minimize the throw. Asseenin Fig. 4.5, thisisonly trueif [w@y |

differsfrom zero and is large compared to [V¢py|. In practice for some types of shots, it
may be easier to avoid the V¢py=0 combinations of speed and sidespin by intentionally
overspinning or underspinning the cue ball, and to account explicitly for the throw by
adjusting the aim point. This approach might be preferable in situations where stun-shot
spin is necessary for position. Examples of this compensation are described in the
following problems. Another complicating factor is the seemingly random phenomenon
called skid (also called cling or kick). Skid occurs when asmall piece of chalk or dust is
trapped between the contact point of the balls, increasing dramatically the coefficient of
friction for that particular shot. When this occurs, the amount of throw associated with
nonzero Vepy is very unpredictable.
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Object Ball Throw Sensitivity
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Fig. 4.5. A contour plot of the sensitivity of the object ball throw factor
cos(y) is shown as a function of the cue ball sidespin to speed ratios
Jo=(Rwoz/Vo) and the topspin-draw spin to speed ratio Joy=(Ru'0y/Vo).
Adjacent contours differ by a factor of two in the sensitivity function
F(Jo). Theinset figureisan expanded view of the small region near Jo,~0
and chy—o

Problem 4.6: For anatural roll cue ball (or reverse natural roll cue ball) with no
sidespin, uxg=0, how does the throw angle depend on the cue ball cut anglee:?
Answer : From P4.4, the cos(y) factor reduces to the form

) .
cos(y) (sin(a)2+cos(a)2)}é sin(a) [NR or RNR with wg,=0]

The throw angle is determined by e=arctan(4ppCcos(y))=arctan(ppsin(et)). The throw
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| depends only on the cut anglee.. ItisO for astraight in shot (2:=0), and increasesto a

| maximum value for very thin cuts (m»m2h. Theimpact parameter for the cue ball/object
| ball collision isbpp=Rsin(e:). This allows the factor cos(y)=bpp/R to be easily determined
|geometrical|y for any given cut shot with natural roll and no sidespin.

Based on these considerations, the following procedure may be used to adjust for
object ball throw for natural roll shots with no sidespin. (1) Determinep pp Using the
procedure in P1.6. This only needs to be done once for agiven set of balls. (2) For the
particular shot of interest, estimate the distance D from the object ball to the pocket; the
corresponding maximum throw distance will bepuppD. (3) For the zero-friction cut angle
for the particular shot of interest, estimate the impact parameter for the ball-ball collision,
and the ratio bpp/R. (4) Multiply the maximum throw distancep ppD by the impact
parameter ratio bpp/R, and call theresult s. (5) Imagine a point that is displaced by the
distance s from the pocket target, and aim for this offset point asif there were no throw.

For an example of this procedure, assume that j1 pn has been determined for the set
of ballsasin P1.6 to be 4/72. For the shot of interest, the distance from the object ball to
the pocket is 36". The maximum throw distance for this shot is (4/72)*36"=2"; that is,
half the distance results in half the maximum throw. The shot of interest is amost
straight-in, aslight cut to the left, with bpr/R=Y4. The offset distance is given by
s=V4*2"=Y5". Now adisplaced point ¥2" to the inside of the pocket center is used asa
corrected aim point. Thisaim point isvalid for either natural roll or reverse natural roll.

With alittle bit of practice, these estimations become second nature and may be done
amost instantaneously. For other w@y, spin combinations, the offset point will be

displaced from the target pocket somewhere between the maximum value of 2"
(appropriate for a stun shot) and the natural roll value of ¥5".

The use of sidespin also requires further adjustments to the above procedure, but
this requires even more judgement on the part of the shooter. One way to adjust for
sidespin isto estimate mentally the cos(y) factor by imagining how the cue ball will be
spinning at the time of contact. Replacing the cue ball with a striped ball, and practicing
various combinations of topspin, draw, stun, and sidespin will help the player develop
this estimation skill. 1n general, the offset point will aways be displaced |ess than the
maximum value determined by uppD. Of course, small ppp values mean that any errors
made in the estimation of the cos(y) factor result in smaller errors in the object ball
trgjectory. Sticky ballswith largeipp are very challenging. One of the challenges faced
by tournament playersis the accurate adjustment to different sets of balls, each with
different i pp, as they move from table to table in the tournament matches.

|Pr oblem 4.7: What is the resulting object ball spinwy due to the frictional force Fa (t)?

|Answer: The angular acceleration is given by the equation r © F =l m . Integration of the |
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force over the contact time gives
-R {2, _
ary, __|(al Fa (t@dtq:—

- R:*bb i (cos(y)]+sin(y)12)(‘atFx(tcpdtc

_ M ViX [ wn(o ) »
=& (- siny)j + cogy k)

PA4.7 gives the resulting object ball spin if the frictional force acts on the ball
without opposition. During the collision, in order for a horizontal component of angular
acceleration to occur, the ball-ball friction must act simultaneously with the ball-cloth
friction. It will be assumed hereafter that the ball-cloth friction isinsignificant during the
collision time, and its affects will be ignored. The practical accuracy of this
approximation may be estimated by the following considerations. A typical collision
time ist=0.0001s, and atypical object ball velocity is Vp=100in/s. The average impact
force isthen given by Fayg=MVpyt. The dliding frictional force of the ball on the clothis
given by FsuisMg. Theratio is given by Fg/Faygisgt/Vbx. Assuming a ball-cloth
sliding coefficient of frictionps=0.1, thisratio is Fg/F4,4=0.0000386. Therefore, the ball-
ball frictional forces do indeed dominate the ball-cloth frictional forces during the
collision.

The treatment of the vertical acceleration due to the vertical component of the
frictional force is somewhat complicated. The table surface prevents any vertical
acceleration in the downward direction. The weight of the ball opposes any upward
frictional force, but it doesn’t prevent upward acceleration. Therefore, during the contact
period, if the ball is on the table surface and (FA» ~Mg) is negative, resultingin a
downward net force, there is no acceleration at that instant. But if (FA ~Mg) is positive,
then that upward force resultsin vertical acceleration of the ball off the table surface. If
Mg is neglible compared to a large positive Fa ; then the maximum vertical velocity
immediately after the collision would be the same as the maximum throw velocity; the
maximum angle that the cue ball departs from the table surface would be the same as the
maximum horizontal throw angle. With the average impact force given by Fayg=MVpy/t
and the downward force of gravity given by Fgra=Mg, then the ratio is given by
FgravFavg=gt/Vbx. For the typica shot considered in the previous paragraph, the
numerical value of thisratio is Fgrav/Favg=0.000386. Therefore, the ball-ball frictional
forces a'so dominate the gravitational forces during the collision.

Problem 4.8: A cue ball with backspin strikes an object ball straight on. Assume the
gravitational force on the ball is negligible during the collision, a shot speed of 36"/s, and
Hbb=4/72 asin P1.6. What height does the object ball achieve over the table, and how far
away from the starting point doesit land?

Answer: The vertical velocity is given by

Vibz = HbbsiN(y) Vbx
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For astraight on shot with backspin, sin(y)=+1 and the entire frictional force is directed
upward. Vp, =(4/72)36"/s=2"/s. The height of the ball trajectory above the table is given
by

Z=Vpzt - Yogt2 = (2"/9)t - ¥»(386"/s?)t2
The maximum height is achieved when dz/dt=0. This occurs at tmax =Vbz/ 9 bbVbx /0
The time to achieve maximum height is linear in the coefficient of friction pipp and in the
shot speed Vi .

tmax =VbZ/g = 2/386 s= 0.00518 s
The height achieved at thistimeis

2 2\/2
Zmax= Vibz tmax - ¥20tmax 2 = Vbr _ tboVix
29 29
= (2/386)" = 0.00518"
The maximum height achieved is proportional to the square of the coefficient of friction
and to the square of the shot speed. The ball returnsto the table at the time (2tmax ). At
thistime, the horizontal distance traveled by the ball while airborneis
_ _2u bbvgx
X = Vbx (2tmax ) = ———
= 36"(2)(2/386) = 0.373"
The horizontal distance of the jump is proportional to the coefficient of friction and to the
sguare of the shot speed. Due to the very short times and small distances that the object
ball is airborne, thisjumping effect can be neglected, for the most part, during play.

One point to notice in P4.8 is that while the object ball has a vertical momentum
immediately after the collision, the cue ball is constrained to the table surface. If the cue
ball strikes the object ball with topspin, then it is the cue ball that leaves the table and the
object ball that is constrained to the table surface. In either case, the vertical component
of the linear momentum is not conserved by the balls during the collision. The reaction
of the downward-directed ball is absorbed by the table. If the table had been considered
to be part of the system, then linear momentum would have been conserved in the
analysis. In this respect, the nonconservation of linear momentum in the vertical
direction is an artifact of the formal separation between the “ system” and the
“surroundings’ in this analysis.

Problem 4.9: Using the velocity and spin results from P4.2-P4.7, compute the total
kinetic energy before and after the collision. Determine Ejngagic. (For simplicity, ignore
the velocity and spin resulting from the vertical components of the frictional force.)
Answer: The total kinetic energy immediately before the collisionis

To = Togrrang + To(Roy) = 3MV§ +3 10
The kinetic energy immediately after the collision is
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Tr =4M(VE +V)+31(0Z +wd)

Writing all of the friction-dependent contributions in terms of Vi, gives
Viy = pp €08y Vpy = upp cos{y )Vgcos(a)
Vp =Vocos(a)i +Vpyj

A

Ve = (VOSin(O‘) B be)l

Y

w, = lz

) . BV &
0, =g + oy = - o, Sn(a)i +og, cosa)] +E%OZ . Zgy;k

Substitution into the kinetic energy expression gives
Tt =To+ M(- Vi (Vosin(ar) + Rugz) + 3V5 )

_ 2
=Tp+M ( ViVepy +;vby)
The kinetic energy change Ejnelagtic.1S given by
_ _ - 7\/2
Eindasic=To- Tf = M(be(VOS'n(a) + R(’302) - Ebe)

= M(beVchy - %ng)
The friction allows for transfer of energy between the translational and rotational degrees
of freedom, but only at acost. Thisis consistent with the effect of ball-cloth friction on
the kinetic energy. In the expressions above, Vcpy isthe horizontal tangential component
of the contact point velocity of the cue ball at the instant of collision. Vcpy determines the
direction of the frictional force on the object ball and therefore has the same sign as V.
The lowest order term in iy, in the loss of energy due to friction, MVpyVepy, is positive.
The second term, which is second order inppn and therefore in general much smaller in
magnitude, is always negative.

Problem 4.10: Determine fgasiic , findlastic, and &g in terms of Vi, What are these
Answer: From P4.9, &jngasiic IS given by
_2 _ 2
Dinelastic = ™ Einelastic = 2bechy B 7be
Generalizing the approach of P4.1 for arbitrary cue ball spinm,

_2p2([2, 2 2\_2p2([.2, 2
Dejastic =2 R (wc +tof - wo)—éR (wc +wf - (wg - oy ) Xw, - m}))
_ 42
_ER w, Ay
=- 2Rwg,Vpy +5VE

_ _ : 2
Dtotal = Pelastic t Dinelastic =2VbyVo Sin(a) - 2Vpy
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| In general fitota 1S @aquadratic function of the ball-ball sliding coefficient of friction ppp. |
| In the special case of Vpy =0, then also Vipy=0 and &gt Vanishes, indicating that the
| departure angle of the cue ball and object ball is exactly aright angle.

Theinitial velocity of the cue ball immediately after collision is given by
Ve = (VO sin(a) - be)] . The magnitude of this velocity depends on the object ball
throw, but its direction isindependent of any frictional forces. If the cue ball has no spin
about the horizontal axis (i.e. only sidespin, no backspin or topspin), then thisinitial
direction is unchanged by the sliding friction of the cloth. The cue ball will slow down
upon achieving natural roll, but the velocity direction will remain unchanged. Inthis
sense, the trgjectory of the cue ball after the collision is less dependent on the ball-ball
coefficient of friction upp than the object ball trajectory. This observation is useful in
judging and executing accurate stun shot caroms.

Exercise 4.1: Experiment with stun shot caroms. Begin by placing the cue ball afew
inches away from the object ball, and cueing exactly in the center. The cue ball should
not curve after the collision. Mark the position of the cue ball center at the collision point
and the two contact points where the balls touch the cushions. Measure the angle and
determine how close is the departure angle to aright angle. Include shots with sidespin to
determine the effects of fiotg ON the departure angle. With some practice, stun shot
caroms can be executed very accurately. Stun shot caroms are particularly useful in
9-ball.

Problem 4.11: Determine the total angular momentum immediately before and after the
collision relative to the point that corresponds to the cue ball center at the moment of
collision. Isangular momentum conserved? (ignore the linear velocity components due
to the vertical frictional forces)

Answer: There are two contributions to the total angular momentum. Oneisthe
rotational contributions of the balls spinning about their centers, L¥'" = | w, and the

other isthe orbital contribution of the centers of mass moving about the point of origin,
Lot = ¢ 1 Before the collision, these contributions are

L3 =ro(t)” pot) = (Vet) (MVg)=0

LN =@,
L 0= I_c(;)rbit

After the collision the contributions are

+L3" =1 wg
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LED = 15(1) po(t) = (2R1 +Vpt)” (MV)

= 2MR(i " V) = ZMR(T’ (vaf+vby])) = 2MRVp k

= -2|(Dbzk
LP" = 1wy,
Lc():rbit =re(t)” pe) = (Vbt) ’ (va) =0
LSC'Oin =lm; = I(mo +mb)
L = L%rbit +Ls(§)in +L%rbit + Lst;;)in = lag +2|00by]
Thetotal angular momentum difference before and after the collision is then
L - Lo = 2lop]

The total angular momentum is always conserved except for the horizontal component

about the y-axis, which is conserved only whenwpy=0. This component arises from the
vertical frictional force during the collision, and vanishes only when w gy, =0 (i.e. for stun

shot collisions). The vertical component of angular momentum is always conserved, asis
the other horizontal component about the x-axis; the orbital angular momentum arising
from the object ball throw compensates exactly for the change in the spin angular
momentum. This compensation cannot occur for the vertical frictional force because of
the constraint of the table surface. In the above equations, the vertical linear acceleration
was neglected, but even if it had been included for the jJumped ball (as determined in
P4.8), the corresponding contribution from the nonjumped ball during the collisionis
eliminated by the table surface. Indeed, as discussed previously, because the vertical
components of linear momentum are not conserved in the collision, it should not be
expected that the angular momentum components due to these same frictional forces
could be conserved.

In the previous few problems, various aspects of object ball throw have been
examined. The object ball throw affects the trgjectories of the balls immediately after the
collision. The behavior of the balls after the collision is determined by both the initial
post-collision conditions of the balls and by the action of the cloth friction on the sliding
balls which was discussed in some detail in the previous sections. The results of the
present section heretofore, involving ball-ball interaction will now be combined with the
results of the previous sections to examine the behavior of the sliding balls as afunction
of the collision conditions, and eventually, as afunction of the tip-ball contact point. In
the following discussions, object ball throw will be largely ignored in order to simplify
the derivations. In most cases, the effects of object ball throw may be included, at the
cost of some additional complexity, but this adds relatively little to the basic
understanding of the situations. The first situation to be considered is the behavior of a
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natural roll cue ball after collision with an object ball. This special caseis particularly
central to pool and billiards because of the special importance of natural roll.

Problem 4.12: What is the angle of deflection of anatural roll cue ball as afunction of
the object ball cut angle after the collision and after natural roll is achieved by both balls?
(ignore friction between the balls)

Answer: With no ball-ball friction, the initial deflection angle is 90 degrees. In terms of
unit vectors i¢ and ]G inthex andy' coordinate directions respectively in Fig. 4.2, the
initial velocity vectors immediately after collision are given by

Vi =Vgcos(cr)(cos(a)i¢- sin(a)jd

V¢ =Vosin(a)(sin(a)i¢+ cos(a)jd -
The cut anglee: isthe angle between vectors Vp and V. Thereisno initial object ball
angular velocity immediately after the collision, so only the speed changes and not the
direction upon achieving natural roll. The final natural roll velocity is given by

VbR =3 Vb = §Vo cos{or){ cos(c)i ¢+ sin(a)j ¢ -
The situation is somewhat different for the cue ball. The cue ball has natural roll before
the collision, Vo= Rw @, and this angular velocity is unchanged by the collision with the
object ball. The ball-cloth friction from thisinitial angular velocity creates aforce
component in the i¢ direction only. The final velocity vector for the cue ball is

o . 2 ~ . "

Venr = Ve +8Voit= (3vgsin? () + §Vo)ie+ (Vo sin(a)cos(a))je.
The cue ball deflection angleH, relative to the velocity vector Vg, after natural roll is
achieved, is determined by

sin(a)cos( )
tan(6) =———
(©) sin“(a) +2

Immediately after the collision, the cue ball path is a parabola as determined in P2.3. The
frictional force accelerates the cue ball until natural roll is achieved. At the point that
natural roll is achieved, the cue ball rollsin a straight line with no acceleration. The

angle between this straight line and the initial velocity direction Vg is the deflection angle
H which satisfies the above equation.

Problem 4.13: Show that tan(a +0) = 5 tan(a)
tan(a) +tan(6) with
1- tan(a)tan(0)

Answer: Using the tangent addition relation tan(a +6) =

tan(a) :%Z)) and tan(0) :% gives
5
sin(oc)(sinz(oc) + co2(a) + %)
tan(o. +6) = . =4 tan(a)
£cos(a)
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Problem 4.14: What cut angle e: maximizes the natura roll deflection angleB?
Answer: Rewrite the above expression as 6 = arctan(%tan(a)) - oo . Differentiate with

respect toe: to obtain

o __ 14
do 4+ 45sin°(a)
Setting the derivative to zero and solving for . gives
. &[20 T
= arcsing—+ =0.49088 = ——— [= 28.125d
*(Orma) €30 63999 | edl

Note that thisisjust abit thicker than a half-ball hit, which isap® or a 30 degree cut
angle (neglecting collision induced throw).

Problem 4.15: What is the maximum deflection angleB for a natural-roll cue ball
collision?
Answer: Substitution of o, ) gives

e = G ) 0

=2 - 209 1=058903=—
2 e 5.3335
Thisisvery useful to know because a natural-roll cue ball carom at thisangleis
intrinsically more accurate than a cut shot with the same cut angle as demonstrated in the

following problem.

[=33.749 deg]

Problem 4.16: If the object ball is cut about 2 degrees away from the maximum
deflection angle as determined in P4.13, what is the change in the cue ball deflection
angle?
Answer: If theangleis 2 degrees less, then

6 = arctan($ tan(26deg)) - 26deg = 33.64deg

which is 0.11 degrees away from the maximal value. If the angleis 2 degrees more,
corresponding to a half-ball hit of 30 degrees, then

6 = arctan($ tan(30deg)) - 30deg = 33.67deg
which is 0.08 degrees away from the maximal value. In both cases, the cue ball
deflection angle is much more stable to small deviations than the object ball cut angle.

Problem 4.17: What is the relation between the cut angle . and the natural roll deflection
angled for small cut anglese:?
Answer: For small angles (measured in radians), tan(x) » x. Therelation,

tan(a. +0) = 5tan(a), from P4.13 then gives
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8 »3a [for small ex].

Thisrelation is useful to know when playing position using natural roll on nearly straight-
in shots. Itisdifficult to achieve alarger amount of topspin than Vo=Ruw: with adirect
cue-tip/cue-ball shot due to the risk of miscue (see P1.7). However, higher spin/speed
ratios can be achieved with carom shots. A higher spin/speed ratio would result in a
smaller factor than that in the above equation.

Problem 4.18: What isthe cut angle e at which exactly half of the kinetic energy of a
natural-roll cue ball is transferred to the object ball? What is the corresponding natural
roll deflection angleB? At thisangle, what are the final kinetic energies of both balls?
Answer: When the cue ball has natural roll, Vg=Rug, the total kinetic energy is
T=3MVE +3 10 =5 MV§
The energy of the object ball immediately after collisionis
Ty = 3 MVE = 3 MVE cos?(a)
Setting Tp=Y>T and simplifying gives
o) = arccos(\/% ) = 0.57964 = 5_47;99 [=33.211 deg]
This angle is unchanged as the object ball achieves natural roll. The corresponding
deflection angle after natural roll of the cue ball is achieved is

- X 5 _ -
Therelation 7/2tan(a 1Ty) = tana 1 O usedto simplify the above expression, may be
T e~ (5Te

verified using the tangent addition formulain P4.13. Therefore, when the final deflection
angles are equal for both balls, then each ball has the same kinetic energy immediately
after the collision. Note that the cut angle at which this occursisjust a bit thinner than
that for ahalf-ball hit (which would be 30 degrees, neglecting collision induced throw).

The final object ball and cue ball kinetic energies, using Vp Nr @nd Ve Nr from
PA4.12 are

To,NR =3 MVhNR = To(%g cos’ (a))

TenR = 3MVZ R = TO(%gsin“(a) +20sin%(a) + £ + ggsin“(a)cosz(a))
where Tg isthe initial cue ball trandlational energy. These relations are satisfied for any
cut anglect. Substitution of COSZ(OL(_:LT)):7/1O and sinz(a(_lT)):3/10 for the specific half-

2 2
energy cut angleresultsin

To,NR=TonR =1 T0 -

Not only isthe energy divided equally between the two balls upon collision with a cut
angle of 1Ty but the final energies of the two balls are equal after both balls achieve
2
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natural roll. The distance that aball rolls after achieving natural roll, neglecting
subsequent cushion and ball collisions, is directly proportional to the natural roll kinetic
energy. Thisrelation isuseful in situationsin which it is necessary that both the object
ball and the cue ball roll the same distance, and as a point of reference when unequal
distances are required.

In Fig. 4.6 the deflection angleB of anatural roll cue ball, as determined in P4.12
and P4.13, is plotted as a function of the object ball cut anglee:. Also shown on the same

graph is the derivative curve (%QLR) as determined in P4.13. The points on this curve
corresponding to a half-ball hit, the maximum deflection angle o(q,, ) from P4.13,

and the deflection angle corresponding to splitting the kinetic energy as determined in
P4.18, are also plotted. The derivative curve is monotonic in the range shown in Fig. 4.6

(ingenerd, it is an even function, symmetric about ¢i=0). The derivative curve starts with
avalue of ¥, at &=0 (see P4.14), decreases to the value of zero at o, ), andthen

approaches its asymptotic value of -7 as the cut angle approaches p/2. Another point of

interest shown in Fig. 4.6 isthe value of the cut anglec: at which the slope (d—?ﬁ?) has a

value of one. Thisoccurs at ¢ = arcs n(,/ %5) =.26116 [=14.963 deg]. For cut angles

—d—deo'fR >1 and the natural roll cue ball tragjectory is more sensitive than the

less than o -,

object ball tragjectory to small variations in the cut angle. However for the rest of the

range of cut angles, ig% <1 and the cue ball tragjectory is less sensitive than the object

ball trgjectory. Lesssensitivity meansthat it is easier for the shooter to control, and this
may be used to advantage, for example, in placing the cue ball more precisely in position
and safety play.
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Fig. 4.6. The post-collision natural roll cue ball deflection angle is shown
as afunction of the object ball cut angle. TheBnR curveis applicable
when the cue ball has natural roll immediately before the collision. Bgyn
iswhen the cue ball has no spin before the collision. Brnr is when the cue
ball has reverse natural roll before the collision. The straight lineB=c:
corresponds to an equal splitting of the kinetic energy after both balls

achieve natural roll. Also shown isthe dashed curve defined by (%N—R) .

Several important individual points on each of these curves are also shown
as discussed in the text.
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Problem 4.19: If the cue ball is not rotating upon impact with the object ball (a stun
shot), at what cut anglec: is half of the kinetic energy transferred? What are the final
energies of the balls? (neglect any frictional forces between the balls)
Answer: Taking the velocitiesimmediately after the collision from P4.12, the initial
kinetic energies are

Ty = 3 MVE =3 MV§ cos?(a)

Te =3 MVZ = 3 MVGsin?(a)
Equating these two energies gives

tan®(a) =1

o = arctan(l) = % [= 45 deg]

Each ball hasinitially after the collision an energy of ¥»Tp. Since neither ball has any
angular velocity immediately after the collision, both balls slow down upon achieving
natural roll by 97 of the initial ball velocities. Thereis no change of angle, since the
velocity directions of the balls do not change. The natural roll kinetic energy of each ball
isthen (¥2)(97)2T0=(%¥9g) To. Compared to the results of P4.18 involving natural roll of
the cue ball, it is seen that the cut angle is thinner and that the final energies of both balls
are smaller relative to Tg with a stun shot than with natural roll. This half-energy cut
angle point for stun shots is shown on theB g, curvein Fig. 4.6. TheBgy curveisa
straight line that ranges from the limiting values of Bgyn =p/2, at cut anglec:=0, toB gqyn
=0, ate.=p/2.

Problem 4.20: What is the natural roll cue ball deflection angle as a function of the cue
ball spinw oy at the moment of collision and the object ball cut angle?
Answer: Generalizing the results of P4.12, it is convenient to write the natural roll cue
ball velocity in terms of the spin/speed ratio Joy.=(Ruoy/Vo).
- .2 - . >

Venr =3V +%V0J0yl ¢= %VO(sm (o) +% Joy)l ¢+3Vo(sin(a)cos(a))j ¢

The cue ball deflection angle is determined by the ratio of the two components.
sin(o)cos(a

tan(0) = — 2( ) 2( )

sn(a) + £ Joy

Using the tangent addition relation, this may be written as

& +£ Jg, 0
tan(a +0) =¢—>—=+tan(a)
e tdoy @

For the natural roll condition, Joy=+1, these results al agree with those of P4.12-P4.13.

Problem 4.21: In P4.18 and P4.19 it is seen that a particular cut angle splits evenly both
theinitial kinetic energy and the natural roll kinetic energies of the two balls. Under what
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conditions will a cut angle split both energies? (assumei 7=0)
Answer: Half of theinitial kinetic energy istransferred when Tp=%5To. This occurs when
cos? (o) = (% +1 ng)
where Joy is the spin/speed ratio (Ruoy/Vo). The naturd roll kinetic energy is split evenly
when Th NR=Te,NR- Using the previous natural roll conditions, this occurs when
COS2 (o NR) = (% + % Joy)
The anglese: and exnR are equal only when
Joy (Joy —1) =0
There are only two possible solutions to this equation: Joy =1, the natural roll situation
discussed in P4.18, and Joy =0, the stun shot condition discussed in P4.19. For other
spin/speed ratios, there will be one angle e that splitstheinitial kinetic energy, and a
separate anglecing that splits evenly the natura roll kinetic energies.

Problem 4.22: If the cue ball has reverse natural roll (RNR), Vo=- Rw gy, what isthe

relation between the cut anglec. and the natural roll deflection angleA?
Answer: For reverse natural roll, Joy =-1. Referring to the result in P4.20,

tan(o. +6) = - Stan(a)
The sign factor in this equation indicates that (¢.+8) isin adifferent quadrant than e.
Specifically, Ofz£p2 isawaysin the first quadrant, and p2EH -+ £p isalwaysin the
second quadrant. Taking the appropriate quadrant for B gives the relation

0= arctan(- %tan(oc)) -otm o

For small cut anglee, it is seen that
9»3‘5-%(1 [for small ]

The same factor of 9 is seen for the RNR draw shot as for the (topspin) natural roll shot
in P4.14. However, in the case of adraw shot the deviation is away from the reverse
direction p (or 180 degrees), rather than the forward direction. Asin the case with
topspin, it is difficult to achieve alarger amount of draw than Vg=—Ruwg with a normal
direct cue-tip/cue-ball shot due to the risk of miscue (see P1.7). However, higher
spin/speed ratios can be achieved with carom and masse shots.

Problem 4.23: 1n P4.18 and P4.19 it is seen that the kinetic energy of the cue ball and
object ball is split evenly when the cut angleis equal to the cue ball deflection angle for
Joy=1 and Joy=0. Show that this condition is true for arbitrary Joy. What isthe cut angle
that splits the natural roll energy of areverse natural roll collision? How doesthisangle
compare to the natural roll angle from P4.18.

Answer: From P4.21, the post-collision natural roll kinetic energy is split evenly when
cos’ (o) = (—% +% Joy) and sin (o) = (—% - %Joy). Substitution of these relations into the

general deflection angle equation of P4.20 gives

Pool Physics 56 Draft: 29-Feb-96




sin(a)cos(a) _ sin(a)cos(a)
sn®(a)+2Jy,  cos’(a)
=tan(a)
or in general A = & when the natural roll kinetic energy is split evenly. Thislineisshown
in Fig. 4.6. The above equation for the cut angle may be written as

a=0= arcsin(, /% - %Joy)

In particular, for reverse naturd roll, Joy=-1, the half-energy cut angle is given by

— ; 7] — — T —
=arcsin|, / =0.99116 = =56.789d
“ITRWR ( m) 31696 | °d]

From comparison with P4.18, it is seen that + =x. Thisisan example
P OIT,RNR T *4T,NR P

tan(0) =

of the general relation
a1 +oz =7
5T 0oy~ 3T Jgy

which follows from the identity cos” (o1 X ) =sin®(asy . 5)
2 70y 27 y

The reverse natural roll deflection angle is shown as afunction of the object ball
cut anglein Fig. 4.6. Considering HrnR as afunction of cut angles, it is seen that BryR
ranges from zero, for very thin cuts, to p, for very thick cuts. In contrastBnr from P4.14
only ranged from zero to a bit over p/6. Since natural roll topspin and reverse natural roll
backspin represent the practical extremes of cue ball spin (neglecting collision effects and
masse), the area between theBNR andB ryR curvesin Fig. 4.6 respresents all possible
practically allowed shots. The area between the B gy, curve and theBrnR curve
represents all possible draw shots, and the area between theB gn andf NRr curves
represents all possible topspin shots. Inspection shows that the area associated with draw
shots is much larger than that associated with topspin shots. This meansthat thereis
much more flexibility with respect to carom angles with draw than with topspin, or
equivalently, that topspin shots are generally less sensitive than draw shots to variations
in the cut angle or amount of spin. It may be seenin Fig. 4.6 that Brnr iSamost a
straight line, with an average slope of about twice that of Bgyn. SinceBgyn isrelatively
easy to determine, thisallowsin turnBryr to be estimated for any cut angle smply by
multiplyingHgyun by 2. Inspection of Fig. 4.6 shows that this simple factor will always
overestimate the actual deflection angle. The following problem demonstrates the
magnitude of error of this approximation.

| Problem 4.24: At what cut angle does areverse natural roll cue ball deflect at exactly a |
| right angle? |
|An3/ver: From P4.22, the desired cut angle satisfies the relation |
| tan(an +3%) = - 3 tan(on) |
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Using the identity tan(o.a + %) = - I/tan(a ), et may be determined to be
— 2) __=x
an = arctan(\/;) = 068472= 1
Thispoint is plotted on theBrNR curvein Fig. 4.6. The simple “factor of 2" estimate
from the stun-shot curve would have predicted this angle to be p/4 (or 45 degrees), which
would have been about 12% in error. The correct cut anglegia isabout midway between
a half-ball cut angle and the p/4 angle.

[=39.232deg]

Problem 4.25: For agiven cut angle e, what sidespin/speed ratio will result in no
horizontal tangential frictional forces?
Answer: The surfaces of the balls must not slide against each other in order for the
frictional forces to vanish during the collision. The velocity of the cue ball contact point
just before the collision is the sum of the linear velocity Vg and the instantaneous vel ocity
due to the angular velocity about the vertical axism * r. The contact point velocity is
given by

Vep =Vo cos(ar)i + (Vosin(a) + Rw OZ)] - Rogy cos{a )k

=Vepxl +Vepyl +VepK

When V¢py=0, then the horizontal frictional forces vanish. Solving for the ratio Rug:/Vo
gives

Rwo, ;
J S — Sn
0z Vo (o)

Problem 4.26: Using the initial spin/speed ratio and the final natural roll spin/speed ratio
from P3.6, and the Vpy=0 relation from P4.25, what cue tip contact points will result in
no horizontal tangential frictional forces between the two colliding balls with a cut angle
o6?
Answer : For the spin/speed ratio immediately after cue tip contact, the contact points are
given by the vertical line satisfying
Sy

2R
Note that the object ball contact point satisfies the relation, y'cp=—Rsin(et). Thisgivesthe
relation between y'iip and y'cp as

Yo = Y6
The sign difference means that the cue tip impact parameter isin the opposite hemisphere
from the object ball contact point. Note that in the l[imit of an extreme cut shot of angle
p/2, this result agrees with that of P3.5; that is, “sideways natural roll” is achieved with a
horizontal impact parameter of 2/sR. This relation is useful when the object ball collision
occurs very soon after the cue tip contact, before the friction between the ball and cloth
has time to change the velocity.

sin(a) =
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When the cue ball is allowed to achieve natural roll before colliding with the
object ball, the desired cue tip contacts points satisfy

o
sin(oc):—(;i;p-
zeZupz
gﬁye‘po
Yo = - e 7R @ 4ip

For agiven cut anglee:, thisisastraight line that passes through the origin (0,0). An easy
way to estimate the sets of points defined by this straight lineisasfollows. Refer to Fig.
4.7. Determine the correct contact point at height z; p=7/5R. At this contact point, natural
roll would be achieved immediately (see P3.5), and the natural roll horizontal offset isthe
same as the initial horizontal offset determined above, namely the contact point would be
(y,'z):(-3/5ycp,7/5R). The set of desired pointsis then given by drawing a straight line
between this particular contact point and the point at the very bottom of the ball (0,0). In
particular, the point on this straight line that is the minimum distance from the center is
on the small circle as shown in P3.7.

Set of desired
contact points

Object ball contact (-2/5Yep /I5R)

point on rear of Point of minimal
ball displacement from
center

“Small Circle” of
aim points

y
-

0.0
Fig. 4.7. The set of cue tip contacts points that correspond to no
(horizontal) frictional forces when the cue ball achieves natural roll prior
to collision with the object ball fall on a straight line. The object ball
contact point depends on the cut angle. The slope of the line depends on
the object ball contact point y'¢p as indicated.
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